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Abstract. This paper gives a definition of an extended topological quantum
field theory (TQFT) as a weak 2-functor Z : nCob2 →2Vect, by analogy
with the description of a TQFT as a functor Z : nCob→Vect. We also
show how to obtain such a theory from any finite group G. This theory is
related to a topological gauge theory, the Dijkgraaf-Witten model. To give
this definition rigorously, we first define a bicategory of cobordisms between
cobordisms. We also give some explicit description of a higher-categorical
version of Vect, denoted 2Vect, a bicategory of 2-vector spaces. Along the
way, we prove several results showing how to construct 2-vector spaces of
Vect-valued presheaves on certain kinds of groupoids. In particular, we use
the case when these are groupoids whose objects are connections, and whose
morphisms are gauge transformations, on the manifolds on which the extended
TQFT is to be defined. On cobordisms between these manifolds, we show how
a construction of “pullback and pushforward” of presheaves gives both the
morphisms and 2-morphisms in 2Vect for the extended TQFT, and that these
satisfy the axioms for a weak 2-functor. Finally, we discuss the motivation for
this research in terms of Quantum Gravity. If the results can be extended from
a finite group G to a Lie group, then for some choices of G this theory will
recover an existing theory of Euclidean quantum gravity in 3 dimensions. We
suggest extensions of these ideas which may be useful to further this connection
and apply it in higher dimensions.
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1. Introduction

In this paper, I will describe a connection between the ideas of extended topo-
logical quantum field theory and topological gauge theory. This is motivated by
consideration of a possible application to quantum gravity, and in particular in 3
dimensions–a situation which is simpler than the more realistic 4D case but has
many of the essential features. Here, we consider this example as related to one
interesting case of a general formulation of “Extended” TQFT’s. This is described
in terms of higher category theory.

The idea that category theory could play a role in clarifying problems in quan-
tum gravity seems to have been first expressed by Louis Crane [24], who coined
the term “categorification” . Categorification is a process of replacing set-based
concepts by category-based concepts. Categories are structures which have not
only elements (that is, objects), but also arrows, or morphisms between objects
as logically primitive concepts. In many examples of categories, the morphisms
are functions or relations between the objects, though this is not always the case.
Categorification therefore is the reverse of a process of decategorification which in-
volves discarding the structure encoded in morphisms. A standard example is the
semiring of natural numbers N, which can be seen as a decategorification of the
category of finite sets with set functions as arrows, since each natural number can
be thought of as an isomorphism class of finite sets. The sum and product on N
correspond to the categorical operations of coproduct (disjoint union) and product
(cartesian product), which have purely arrow-based descriptions. For some further
background on the concept of categorification, see work by Crane and Yetter [26],
or Baez and Dolan [9].

So what we study here are categorified topological quantum field theories (TQFT’s).
The program of applying categorical notions to field theories was apparently first
described by Dan Freed [37], who referred to them as “higher algebraic” structures.
The motivation for doing this is that this framework appears to allow us to find
a new way of obtaining a known theory of quantum gravity in 3 dimensions—the
Ponzano-Regge model—as a special case. Moreover what we recover is not just to
the vacuum version of this 3D quantum gravity—what one could expect from an
ordinary TQFT—but to a form in which spacetime contains matter.

To categorify the notion of a TQFT, we use the fact that a TQFT can be de-
scribed, in the language of category theory, as a functor from a category of cobor-
disms—which is topological in character— into the category of Hilbert spaces. To
“categorify” this means to construct an analogous theory in the language of higher
categories—in particular, 2-categories. One of the obstacles to doing this is that
one needs to have a suitable 2-category analogous to the category of cobordisms,
to represent structures such as the one in Figure 1.

A cobordism from a manifold S to another manifold S′ is a manifold with bound-
ary M such that ∂M is the disjoint union of S and S′, which we think of as an
arrow M : S → S′. One can define composition of cobordisms, by gluing along
components of the boundary, leading to the definition of a category nCob of n-
dimensional cobordisms between (n− 1)-dimensional manifolds.

In Figure 1 we see a 3-manifold with corners which illustrates these points and
provides some motivating intuition. This can be seen a cobordism from the pair of
annuli at the top to the two-punctured disc at the bottom. These in turn can be
thought of, respectively, as cobordisms from one pair of circles to another, and from
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Figure 1. A Cobordism With Corners

one circle to two circles. The large cobordism has other boundary components: the
outside boundary is itself a cobordism from two circles to one circle; the inside
boundary (in dotted lines) is a cobordism from one pair of circles to another pair.
We could “compose” this with another such cobordism with corners by gluing along
any of the four boundary components: top or bottom, inside or outside. This in-
volves attaching another such cobordism along corresponding boundary components
by a diffeomorphism. These components are themselves manifolds with boundary,
and “gluing” is accomplished by specifying a diffeomorphism between them, fix-
ing their own boundaries. Furthermore, as the Figure suggests, we can do such a
composition in either a “vertical” direction, gluing at S or S′, or a “horizontal”
direction, gluing at TX or TY .

We want to define an “extended TQFT”, which assigns higher algebraic data
to the manifolds, cobordisms, and cobordisms with corners in this setting. One
necessary preliminary for the example we are interested in is a description of topo-
logical quantum field theories in the usual sense. This is reviewed in Chapter 2,
beginning in Section 2.1. Atiyah’s axiomatic description of TQFTs [2], reviewed in
Section 2.2), can be interpreted as defining TQFT’s as functors from a category of
cobordisms into Vect:

(1) Z : nCob→ Vect

Where nCob has (n−1)-dimensional manifolds its objects and n-dimensional cobor-
disms as its morphisms. A TQFT assigns a space of states to each manifold, and a
linear transformation between states to cobordisms.
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Section 2.3 discusses a construction due to Fukuma, Hosono, and Kawai [43] for
constructing a TQFT explicitly in dimension n = 2 starting from any finite group
G. The FHK construction is an example of how this quantum theory intimately
involves a relation between smooth and discrete geometric structures. Specifically,
this topological theory can be thought of as coming from structures built on man-
ifolds and cobordisms via a triangulation—a decomposition of the manifold into
simplices. It turns out that there is a close connection between the ideas of a the-
ory having “no local degrees of freedom” in the discrete and continuum setting. In
the continuum setting, this means that the theory is topological—the vector spaces
and linear operators it assigns depending only on the isomorphism class of the man-
ifold or cobordism. In the discrete setting of a triangulated manifold, it means that
the theory is triangulation independent

An important feature of a TQFT constructed this way is that it assigns to a
closed, connected 1-manifold (i.e. a circle) just some element of the centre of the
group algebra of G, denoted Z(C[G]). A standard interpretation of such a space in
quantum theory would hold that this is a quantization of a classical space of states.
The classical space would then simply be C[G], so that quantum states are (com-
plex) linear combinations of classical states. An assignment of a group element to a
circle, or loop, can be interpreted as a connection on the circle. Then C[G] consists
of complex-valued linear combinations (“superpositions”) of such connections. The
centre, Z(C[G]), consists of such superpositions which commute with any element
of G (and hence of C[G]). These are thus invariant under conjugation by any el-
ement of G. Such a conjugation is a “gauge transformation” of a connection - so
these elements are gauge invariant superpositions of connections.

These interpretations turn out to be useful when we aim to produce extended
TQFT’s. This notion was described by Ruth Lawrence [61]. These are theories
similar to TQFT’s, for which the theory is defined not on cobordisms, but on man-
ifolds with corners. One setting where this arises is if we consider the possibility of
manifolds with boundary connected by a cobordism. In particular, we are interested
in the case where S : X → Y and S′ : X ′ → Y ′ are already themselves cobordisms.
These cobordisms between cobordisms, then, are manifolds with corners. Here we
shall present a formalism for describing the ways such cobordisms can be glued
together. Louis Crane has written a number of papers on this issue, including one
with David Yetter [27] which gives a bicategory of such cobordisms. We want to de-
fine a structure nCob2, whose objects are (n− 2)-manifolds, whose morphisms are
(n − 1)-cobordisms, and whose 2-morphisms are n-cobordisms with corners. Just
as a TQFT assigns a space of states to a manifold and a linear map to a cobor-
disms, an extended TQFT will assign some such algebraic data to (n−2)-manifolds,
(n− 1)-manifolds with boundary, and n-dimensional manifolds with corners. This
data should have an interpretation similar to that for a TQFT.

To clarify how to do this, we need to consider more carefully what kind of struc-
ture nCob2 must be. So we consider some background on higher category theory.
This field of study is still developing, but there are good introductions by Leinster
[64] and by Cheng and Lauda [23]. The essential idea of higher category theory
is that as well as objects (represented in diagrams as zero-dimensional), and mor-
phisms (or arrows) connecting them (which are one-dimensional), there also should
be morphisms represented by “cells” of two, three, or even higher dimensions, con-
necting lower-dimensional morphisms. For our purposes here, we only need to
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consider higher categories with morphisms represented by at most 2-dimensional
cells. Chapter 3 discusses bicategories and double categories, which we will gener-
alize later, and briefly describes some standard examples of these from homotopy
theory.

Whereas a category has objects and morphisms between objects, a bicategory
will have an extra layer of structure: objects, morphisms between objects, and
2-morphisms between morphisms:

(2) x

f

  

g

>>
yα

��

The “strict” form of a bicategory is a 2-category, which are reviewed by Kelly
and Street [53], but we are really interested in the weak forms—here, all the
axioms which must be satisfied by a category hold only “up to” certain higher-
dimensional morphisms. That is, what had been equations are replaced by spec-
ified 2-isomorphisms, which then must themselves satisfy certain equations called
coherence conditions. Such coherence conditions have been a persistent theme of
category theory since its inception by MacLane and Eilenberg (see, for instance,
[66]), and are important features of higher categorical structures.

Double categories, introduced by Ehresmann [32] [33], may be seen as “internal”
categories in Cat. That is, a double category is a structure with a category of
objects and a category of morphisms. Less abstractly, it has objects, horizontal
and vertical morphisms which can be represented diagrammatically as edges, and
squares. These can be composed in geometrically obvious ways to give diagrams
analogous to those in ordinary category theory. Our example of cobordisms with
corners appears to be an example of a double category: the objects are the mani-
folds, the morphisms are the cobordisms, and the 2-cells are the cobordisms with
corners. In fact, as we shall see, this is too strict for our needs.

We note here that there are several relations between TQFT’s and extended
TQFT’s on the one hand, and higher categories on the other. The categorical
features of standard TQFT’s are described in some detail by Bruce Bartlett [15].
Crane and Yetter [27] describe the algebraic structure of TQFT’s and extended
TQFT’s, showing how certain algebraic and higher-algebraic structures are implied
in the definition of a TQFT. Examples include the well known equivalence be-
tween 2D TQFT’s and Frobenius algebras; connections between 3D TQFT’s and
either suitable braided monoidal categories, or Hopf algebras; and the appearance
of “Hopf categories” in 4D TQFT’s. These illustrate the move to higher-categorical
structures in higher-dimensional field theories. Baez and Dolan [8] summarize the
connection between TQFT’s and higher category theory, in the form of the Ex-
tended TQFT Hypothesis, suggesting that all extended TQFT’s can be viewed as
representations of a certain kind of “free n-category”.

The kind of n-category we are interested in in this paper is a common general-
ization of a double category and a bicategory. Double categories are too strict to
be really natural for our purpose, however—composition in a double category must
be strictly associative, and in order to achieve this, one only considers equivalence
classes of cobordisms, not cobordisms themselves, as morphisms. So we consider
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a weakening of this structure, in the sense that axioms for a double category giv-
ing equations (such as associativity) will be true only up to specified 2-morphisms.
This allows us to take morphisms to be just cobordisms themselves, and the diffeo-
morphisms between them as 2-morphisms. This is analogous to the way in which
the idea of a bicategory is a weakening of the idea of a category.

Bicategories, however, are not really what we want either, since we want to de-
scribe systems with changing boundary conditions, and the most natural way to do
this is by thinking of both initial and final states, and these changing conditions,
as part of the boundary. We call the structure which accomplishes this a Verity
double bicategory, referring to Dominic Verity, who introduced them and called
them simply double bicategories. On the other hand, we show in Theorem 1 that
Verity double bicategories satisfying certain conditions give rise to bicategories. In
fact nCob2 is an example of this. The structure we use to describe such composi-
tions is the one we call a Verity double bicategory. These we describe in Chapter
4. In these, the composition laws of double categories are weakened. That is, the
associativity of composition, and unit laws, of the horizontal and vertical categories
apply only up to specified higher morphisms.

In Section 4.2 we prove that a Verity double bicategory satisfying certain condi-
tions gives a bicategory. To finish Section 4, we describe a general class of examples
of Verity double bicategories, analogous to the result that Span(C) is a bicategory.
A “span” is a diagram of the form A←C→B. Given two spans A←C→B and
A←C′→B, a span map is a morphism f : C→C′ such that the diagram:

(3) C′

~~}}
}}

}}
}

  
AA

AA
AA

A

A C

f

OO

//oo B

commutes. A cospan is defined in the same way, but with the arrows reversed. It is
a classical result of Bénabou [16] that for any category C which has all limits, there
is a bicategory Span(C) whose objects are objects of C, whose morphisms are spans
in C, and whose 2-morphisms are span maps. The composition of morphisms is by
pullback - a universal construction. In Section 4.3, a similar concept in 2 dimensions
is introduced, namely “double spans” and “double cospans”. These give a broad
class of examples of Verity double bicategories, and in particular, we can use them
to derive the fact that there is a double bicategory of cobordisms with corners.

To prove this fact, Theorem 3, requires some technical lemmas, which are put
off until Appendix A. These extend some results about bicategories and double
categories, namely that a double category can be seen as an internal category in
Cat, and that spans in a category C with pullbacks constitute the morphisms of
a bicategory, Span(C). We show a way to describe double bicategories, internal
bicategories in Bicat, and that Verity double bicategories are simply examples of
these which satisfy certain special conditions. We also show that double spans most
naturally form an example of a double bicategory, but that they can be reduced by
taking isomorphism classes in order to obtain a Verity double bicategory.

We describe more specifically the geometric framework for cobordisms with cor-
ners in Chapter 5. Gerd Laures [60] discusses the general theory of cobordisms
of manifolds with corners. In the terminology used there, introduced by Jänich
[48], what we primarily discuss in this work are 〈2〉-manifolds. This describes the
relation of “faces” of the manifold, but in particular in this case it is related to the
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fact that the codimension of the manifold is 2. That is, the manifold M (whose di-
mension is dim(M) = n) will have a boundary ∂M , which will in turn be composed
of faces which are manifolds with boundary, of dimension (n − 1). However, the
boundaries of these faces will be closed manifolds: they are manifolds of dimension
(n − 2). This separates into faces. For us, the faces decompose into components,
and the codimension-2 faces are the source and the target in both horizontal and
vertical directions. We call the resulting structure nCob2, and in Section 5.3 we
prove the main result about nCob2, Theorem 3, that this indeed forms a Verity
double bicategory.

In Chapter 6 we turn to the next essential element of an extended TQFT, the
2-category 2Vect of 2-vector spaces. This is a categorified analog of the category
Vect of vector spaces. There are several alternative notions of what 2Vect should
be—this is a common feature of categorification, since the same structure may have
arisen by discarding structure in more than one way. The view adopted here is that
a 2-vector space is a certain kind of C-linear additive category. The properties of
being C-linear and additive give analogs of the linear structure of a vector space at
both the object and morphism levels. C-linearity means that the set of morphisms
are complex vector spaces. We should remark that these properties mean that 2-
vector spaces are closely related to abelian categories (introduced by Freyd [42], and
studied extensively as the general setting for homological algebra) have a structure
on objects which is similar to addition for vectors. In particular, we are interested
in the analog of “finite dimensional” vector spaces, so 2-vector spaces also need to
be finitely semi-simple, so every object is a finite sum of simple ones.

Section 6.1 describes Kapranov-Voevodsky (KV) 2-vector spaces—the kind de-
scribed above. Each of these is equivalent to the category Vectn for some n (a
folklore theorem whose proof has been difficult to find, so is presented here, along
with some others). Thus, KV vector spaces give a higher analog of complex vec-
tor spaces, which are all equivalent to some Cn. In fact, categories with bothC-linearity and additiveness naturally have a kind of “scalar” multiplication by
vector spaces. So in the categorified setting, the category Vect itself plays the role
of C for complex vector spaces. So Yetter’s [88] alternative definition of a 2-vector
space as a Vect-module turns out to be equivalent to a KV vector space in the case
where it is finitely semisimple.

We describe the morphisms between KV 2-vector spaces—2-linear maps. A 2-
linear map T : Vectn→Vectm can be represented as matrices of vector spaces:

(4)







T1,1 . . . T1,n

...
...

Tl,1 . . . Tl,k













V1

...
Vk







which act on 2-vectors by matrix multiplication, using the tensor product ⊗ in
the role of multiplication, and the direct sum ⊕ in the role of addition. All 2-
morphisms between two such 2-linear maps can be represented as matrices of linear
transformations which act componentwise. Proofs of these widely-known bits of
folklore are, again, difficult to find, so are presented here.

We also show that the concept of an adjoint functor can be described in terms of
matrix representations of 2-linear maps in much the same way that the description
of the adjoint of a linear map relates to its matrix representation. So the two
notions of “adjoint” turn out to be closely connected in 2-vector spaces.
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A special example of a 2-vector spaces—a group 2-algebra—is described. This
turns out to be the starting point to describe what 2-vector space a 3-dimensional
extended TQFT assigns to a circle.

This example leads to discussion, in Section 6.2, of how to build 2-vector spaces
from groupoids. We introduce the concept of “Vect-presheaves” on X. These are
just functors from Xop to Vect (or equivalently, since X is a groupoid, just from X
to Vect). The totality of these functors forms a category, which we call [X,Vect],
whose objects are functors from X to Vect, and whose morphisms are natural
transformations between functors. One important result, Lemma 5, says that for
any finite groupoid X (or one which is “essentially” finite, in a precise sense) the
category [X,Vect] is a KV 2-vector space.

Studying these Vect-presheaves on groupoids is of interest, partly because it
opens up the possibility of a categorified version of quantizing a system by taking
the space of L2 functions on its classical configuration space. This is a Hilbert
space of complex-valued functions on that space—so considering a 2-vector space
of Vect-valued functions is a categorified analog.

On the other hand, Set-valued presheaves on certain kinds of categories are
generic examples of toposes, about which much is known (see, for example, John-
stone [49], [50]). Some results about these can be shown for Vect-valued presheaves
also, although there are significant differences resulting from the fact that Vect is
an additive category, whereas Set is Cartesian.

A theorem for Vect-valued presheaves which resembles one for Set is that func-
tors between groupoids give rise to “pullback” and “pushforward” 2-linear maps
between these 2-vector spaces of presheaves. From a functor

f : X→Y

we get the “pullback”

f∗ : [Y,Vect]→[X,Vect]

and the “pushforward”

f∗ : [X,Vect]→[Y,Vect]

The pullback is easy to describe: a functor F on Y gives a functor F ◦ f on X by
composition with f . But the pushforward depends on the structure of Vect: as
described in Definition 13, given a presheaf V ∈ [X,Vect], the pushforward f∗V
gives a presheaf in [Y,Vect] which gives, at any object y in Y, the colimit of a
certain diagram. This holds more famously for ordinary—that is, Set-valued—
presheaves (see, e.g. [67]), where such a collimit is simply the union of all the
sets in the essential preimage of the object y, modulo any relations imposed by
the morphisms in this essential preimage. The intuition is that one “adds up”
the contributions from an entire preimage—but since there are isomorphisms, this
must be modified. Similarly, for Vect-valued presheaves, the colimit is a coproduct
(i.e. direct sum) of vector spaces modulo similar relations. Clearly, the ability to
construct this pushforward depends critically on the ability to take finite colimits
in Vect.

Both the pullback and pushforward maps carry presheaves on one groupoid to
presheaves on another. For a given f , the two 2-linear maps f∗ and f∗ form an
ambidextrous adjunction. That is, f∗ is both a left and a right adjoint to f , meaning
in particular that for any presheaves V ∈ [X,Vect] and W ∈ [Y,Vect], we have
both hom(V, f∗W ) ∼= hom(f∗V,W ) and hom(f∗W,V ) ∼= hom(W, f∗V ). We then
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say that they are adjoint 2-linear maps—this is an example of the relationship
between adjointness of functors and adjointness of linear maps.

This pair of adjoint maps, the pullback and pushforward, turns out to be essential
to the constructions used to develop the extended TQFT’s we are interested in. The
reason is related to the fact that we described the cobordisms on which they are
defined in terms of cospans, as we will see shortly.

In Section 6.3, we fill out some of the details of what a 2-Hilbert space should be,
including a definition of the inner product, and an extension to infinite dimension.
Not all of this will be used for our main theorem, but it is helpful to put the
rest in perspective, and will be referred to in Chapter 8 when we discuss proposed
extensions of our main results to quantum gravity.

In Chapter 7 we discuss how to construct an extended TQFT based on a dou-
ble bicategory of cobordisms with corners, by means of the interpretation of a
TQFT in terms of a connection on the manifolds involved. This is related to the
Dijkgraaf-Witten models, which are topological gauge theories. Our aim is to give a
construction of an extended TQFT ZG as a weak 2-functor, starting from any finite
gauge group G (in a way which suggests how to extend the theory to an infinite
gauge group).

Section 7.1 describes how to get a KV 2-vectorspace from a manifold. Given
a manifold B, one first takes the fundamental groupoid Π1(B), whose objects are
the points in B and whose morphisms are homotopy classes of paths in B. Then
a connection on the cobordism (or one of the components of the boundary) is a
functor A : Π1(B)→G where the gauge group G is thought of as a category (in
fact a groupoid) with one object.

These functors correspond to flat G-bundles—that is, each such functor from
Π1(M) to G corresponds to a flat connection on some principal G-bundle over
M . Some such functor corresponds to any such connection on any G-bundle. For
convenience, we just call them “connections”. Gauge transformations between con-
nections correspond exactly to the natural transformations between the functors
into G. So the connections and gauge transformations are naturally organized into
a functor category hom(Pi1(B), G), or just [Π1(B), G] for short. This category is
a groupoid, and since manifolds have finitely generated fundamental groups, it is a
finite groupoid. This now plays the role of the “configuration space” of the theory.

We then want to quantize this configuration space [Π1(B), G]. In ordinary
quantum mechanics, quantization might involve taking the space of L2 functions
from a configuration space into C. In the categorified setting, we take the cat-
egory functors into Vect—what we have called Vect-presheaves—and get a 2-
vector space. We will be considering only the case G is finite, and as remarked,
Π1(B) finitely generated. So then [Π1(B), G] is an essentially finite groupoid, and
ZG(B) =

[

[Π1(B), G],Vect
]

will be a KV 2-vector space.
Next one wants to find 2-linear maps from cobordisms. But a cobordism S :

B→B′ can be interpreted as a special cospan

(5) S

B

i

??�������
B′

i′
``@@@@@@@@
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with two inclusion maps. Since the operation [Π1(−), G] is a contravariant functor,
applying it results in a span of the resulting groupoids, where the inclusions are
replaced with restriction maps:

(6) [Π1(S), G]

p

xxppppppppppp

p′

''NNNNNNNNNNN

[Π1(B), G] [Π1(B
′), G]

This is a span, which we can think of as giving restrictions from a groupoid
of “histories” in the middle to groupoids of “configurations” at the ends, via the
projection maps p and p′. These are source and target maps, when we think of
the original span as a cobordism in nCob. This groupoid represents configurations
of some system whose individual states are flat G-bundles. Thinking of spaces in
terms of their path groupoids forces us to categorify the gauge group. The DW
model fits this framework if we think of G as a one-object groupoid (though one
might generalize to replace the gauge group G in various ways, such as a 2-group,
as discussed by Martins and Porter [70]) and get a different theory.

After taking Vect-presheaves, we are back to a cospan (again because the functor
[−,Vect] is contravariant). It is:

(7)
[

[Π1(S), G],Vect
]

[

[Π1(B), G],Vect
]

p∗

55kkkkkkkkkkkkkk
[

[Π1(B
′), G],Vect

]

(p′)∗
iiSSSSSSSSSSSSSS

where the most evident choices for 2-linear maps between these KV 2-vector spaces
are the pullbacks along the restriction maps. The functor

[

[Π1(−), G],Vect
]

which
gives 2-vector spaces for manifolds, and indeed topological spaces (as long as the
fundamental group is finitely generated). We want to use it to yield some 2-functor
ZG : nCob2→2Vect. Objects in nCob2 are objects in a category of manifolds
with corners, but we then would like to get a 2-linear map from a cobordism.
However, this is given as a cospan, so we have two pullback maps in the above
diagram, both of which have the adjoints discussed above. Since S is a cobordism
with source B and target B′, we can take the adjoint (p′)∗ of the right-hand map,
(p′)∗, to get a 2-linear map:

(8) (p′)∗ ◦ (p)∗ : ZG(B)→ZG(B′)

This will be ZG(S). We refer to this as a “pull-push” process. It consitsts of two
stages. The first stage is a “pull”, which gives a Vect-presheaf p∗F on the groupoid
of connections on the cobordism S from F on the manifold B. This is done by
assigning to each connection A on S the vector space p∗F (A) = F ◦ p(A) assigned
by F to the restriction p(A) = A|B of A to B (and acts on gauge transformations
in a compatible way).

The second stage is a “push”, which gives a Vect-presheaf on B′ from this p∗F
on the groupoid of connections on S. This assigns to each connection A′ on B′ a
vector space (p′)∗◦p∗(F ) = colim p∗F (A), which is a colimit over all the connections
A on S which restrict to A′. The colimit should be thought of as a direct sum over
the equivalence classes of such components. The terms of the sum are, not the
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vector spaces assigned by p∗F , but quotients of these which arise from the fact that
some connections may have nontrivial automorphisms.

The “pull-push” process is related to the idea of a “sum over histories”. Recall
that we can think of the 2-vector space of Vect-presheaves ZG(B) as a categorified
equivalent of the Hilbert space L2(X) we get when quantizing a classical system
with configuration space X . So a component in the matrix representation of the
2-linear transformation ZG(S) is indexed by configurations (i.e. connections) on
the initial and final spaces. This component vector space can be interpreted as a
categorified “amplitude” to get from the initial configuration to the final configu-
ration.

A similar procedure, discussed in Section 7.3, is used to get a 2-morphism from
a cobordism between cobordisms. That is, given a cobordism with corners, M :
S1→S2, between two cobordisms S1, S2 : B→B′, we have :

(9) S1

i

��

B

i1

>>~~~~~~~~

i2   
@@

@@
@@

@@
M B′

i′
1

``AAAAAAAA

i′
2~~}}

}}
}}

}}

S2

i′

OO

To construct a natural transformation ZG(M) : ZG(S1)→ZG(S2), a very similar
process of “pull-push” The difference is that instead of pulling and pushing Vect-
presheaves—that is, 2-vectors—one is pulling and pushing vectors. These vectors
can be interpreted as C-valued functions on a basis of the vector space which
forms a component of the 2-linear map ZG(S1) or ZG(S2). Such a basis consists of
equivalence classes of connections on S1 and S2 respectively. Choosing a particular
component (that is, fixing equivalence classes connections A and A′ on B and B′),
one then builds a linear transformation

(10) ZG(M)[A],[A′] : ZG(S1)[A],[A′]→ZG(S2)[A],[A′]

by a “pull-push”. The “pull” phase of this process simply pulls C-valued functors
along the restriction map taking connections on M to connections on S1. The
“push” phase here, as at the previous level, assigns to a connection A2 on S2 a
sum over all connections on M restricting to A2. And again, the sum is not just of
these components, but of a “quotient” which arises from the automorphism group
of each such connection on M . This quotient is related to the concept of “groupoid
cardinality”, and this is discussed in Section 7.3.

So we have described a construction of an assignment ZG which gives a KV 2-
vector space for any manifold, a 2-linear map for any cobordism of manifolds, and
a natural transformation of 2-linear maps for any cobordism between cobordisms.
The main theorem here, which forms the focus of Section 7.4, is that this ZG indeed
forms a weak 2-functor from nCob2 to 2Vect. Along the way we will have proved
most of the properties needed, and it remains to verify some technical conditions
about the 2-morphisms which accomplish the weak preservation of composites and
units.

Finally, Chapter 8 describes some of the motivation for this work coming from
quantum gravity, and particularly 3-dimensional quantum gravity. To really apply
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these results to that subject, one would need to extend them. Most immediately,
one would need to show that a construction like the one described will still give a
weak 2-functor even when G is not a finite group, but a Lie group—or at least a
compact one.

To do this would presumably require the use of the infinite-dimensional variant
of KV 2-vector spaces which Crane and Yetter [27] call measurable categories. This,
and some of the categorified equivalent of the structure of Hilbert spaces is discussed
in Section 6.3, and in Section 8.1 we address how it might be used to generalize the
results above. In particular, we may not have infinite colimits available to perform
the “push” part of our “pull-push” construction. This means there would have to
be some other way to apply the idea of a “sum over histories” in the categorified
setting. Our proposal is that this should be related to the “direct integral” in the
Crane-Yetter measurable categories mentioned above.

Section 8.2, considers the special case when G = SU(2), which is the relevant
gauge group for 3D quantum gravity. The particular case of interest is a 3D ex-
tended TQFT, where manifolds are 1-dimensional, joined by 2D cobordisms, which
are in turn joined by 3D cobordisms with corners. We discuss how one might inter-
pret the theory as quantum gravity coupled to matter. The basic idea is that the
manifolds represent boundaries of regions in space. A circle describes the boundary
left when a point (up to homotopy) is removed from 2-dimensional space. The
2D cobordisms in our double bicategory can then represent the ambient space it is
removed from. Alternatively the cobordisms can describe the “world-line” of such
a point particle”. These two possibilities represent the “horizontal” and “vertical”
directions within the Verity double bicategory of cobordisms. The cobordisms of
cobordisms then represent the whole “spacetime”, in a general sense, in which this
situation is set.

The cobordism with corners in Figure 1 would then be interpreted (reading top-
to-bottom) as depicting a space in which two regions bounded by the outside circles
merge together into a single region over time. Inside each region at the beginning
there is a single puncture. After the regions merge, the two punctures—now in the
same region—merge and split apart twice. At the “end” (i.e. the bottom of the
picture), there is a single region containing two punctures. The physical intuition
is that a “puncture”, or equivalently the circular boundary around it, describes a
point particle. The 2-vector space of states which the extended TQFT assigns to
the circle is then the 2-vector space of states for a particle.

This 2-vector space consists of Vect-presheaves on [Π1(S
1), G]. Example 7 shows

for finite groups G that this is generated by a finite set of objects, each of which
corresponds to a pair ([g], ρ), where [g] is a conjugacy class in G, and ρ is a linear
representation ofG. There is an obstacle to an analogous fact in infinite dimensional
2-vector space, since these may not have a basis of simple objects. This fact is
precisely analogous to the fact that an infinite dimensional Hilbert space need not
have a countable basis, since it follows from the fact that not every object will be
finitely generated from some set of simple objects - and we do not have infinite
sums available in Vect. However, even in an infinite dimensional 2-vector space, it
does make sense to speak of simple objects, and we expect these to be of the form
described.

So then forG = SU(2), we have the simple Vect-presheaves classified by a conju-
gacy class in SU(2), which is just an “angle” in [0, 4π)—since SU(2) doubly covers
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SO(3, 1)—and a representation of U(1), the stabilizer subgroup of a point under
the adjoint action of SU(2) on itself. Such representations give integer “spins”.
These are the same data which label particles in 3D quantum gravity - the “angle”
is a mass, which has a maximum value in 3D gravity, since mass causes a “conical
defect” in the geometry of space, which has a maximum possible angle. The “spin”
is related to angular momentum.

So this theory allows us to describe a space filled with world-lines of “particles”
labelled by (bounded) mass and spin. This is exactly the setup of the Ponzano-
Regge model of 3D quantum gravity. Our expectation is that this model can be
recovered from an extended TQFT based on SU(2). This is related to a program,
on which more details can be found in a paper of Lee Smolin [78], which seeks to
study 3D quantum gravity by means of its relation to a 3D TQFT associated to
SU(2) Chern-Simons theory.

Finally, in Section 8.3, we briefly suggest a possilble direction to look for links
between the theory given here, and spin-foam models for BF theory, based on a
categorification of the FHK state sum approach to defining an ordinary TQFT. We
also suggest two more directions in which one might generalize the theory described
in this paper in the same style as the passage from finite groups to infinite Lie
groups. Two others are to pass from groups to categorical groups, and to pass from
groups to quantum groups.

We can think of a group as a kind of category with one object and all mor-
phisms invertible. A categorical group will have a group of objects and a group
of morphisms, satisfying certain conditions. Replacing our gauge group G with a
categorical group gives a theory based not on connections, but on 2-connections.
There is extensive work on this topic, but a good overview is the discussion by
Baez and Schreiber [12] (see also the definition of 2-bundles by Bartels [14]). The
extension of the Dijkgraaf-Witten model to categorical groups is discussed in a
somewhat different framework by Martins and Porter [70]. An extension of these
ideas to quantum groups is less well studied, but the hope is to recover the connec-
tion between q-deformed SU(2) and the Turaev-Viro model, just as using SU(2)
as gauge group recovers the Ponzano-Regge model, for quantum gravity.

In all these directions, and possibly more, the expression of an extended TQFT
in functorial terms seems to provide a window on a variety of potentially useful
applications and generalizations.

2. Topological Quantum Field Theories

2.1. The Category nCob. In this section, we review the structure of the sym-
metric monoidal category 2Cob which we generalize in this paper. Cobordism
theory goes back to the work of René Thom [82], who showed that it is closely
related to homotopy theory. In particular, Thom showed that cobordism groups,
whose elements are cobordism classes of certain spaces, can be computed as ho-
motopy groups in a certain complex. However, this goes beyond what we wish to
examine here: a good introductory discussion suitable for our needs is found, e.g.
in Hirsch [47]. There is substantial research on many questions in, and applications
of, cobordism theory: a brief survey of some has been given by Michael Atiyah [3].
Some further examples related to our motivation here include Khovanov homology
[55] (also discussed in [13] and [52]), and Turaev’s recent work on cobordism of
knots on surfaces [84].
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Two manifolds S1, S2 are cobordant if there is a compact manifold with boundary,
M , such that ∂M is isomorphic to the disjoint union of S1 and S2. This M is called
a cobordism between S1 and S2. We note that there is some similarity between this
concept and that of homotopy of paths, except that such homotopies are understood
as embedded in an ambient space. We will return to this in Section 3.5. Our aim
here is to describe a generalization of categories of cobordisms. To begin with, we
recall some of the structure of nCob, and particularly 2Cob, to recall why this is
of interest.

Definition 1. 2Cob is the category with:

• Objects: one-dimensional compact oriented manifolds
• Morphisms: diffeomorphism classes of two-dimensional compact oriented

cobordisms between such manifolds.

That is, the objects are collections of circles, and the morphisms are (diffeo-
morphism classes of) manifolds with boundary, whose boundaries are broken into
two parts, which we consider their source and target. We think of the cobordism
as “joining” two manifolds, rather as a relation joins two sets, in the category of
sets and relations (this analogy will be made more precise when we discuss spans
and cospans). More generally, nCob is the category whose objects are (compact,
oriented) (n− 1)-dimensional manifolds, and whose morphisms are diffeomorphism
classes of compact oriented n-dimensional cobordisms.

It has been known for some time that 2Cob can be seen as the free symmetric
monoidal category on a commutative Frobenius object. (This is shown in the good
development by Joachim Kock [56].) This is a categorical formulation of the fact,
shown by Abrams [1], that 2Cob is generated from four generators, called the
unit, counit, multiplication, comultiplication, subject to some relations. The
generating cobordisms are the following: taking the empty set to the circle (the
unit); taking two circles to one circle (the multiplication); adjoints of each of these
(counit and comultiplication respectively).

Figure 2. Generators of 2Cob

The “commutative Frobenius object” here is the circle, equipped with these
morphisms, as illustrated in Figure 2. The relations which these are subject to
include associativity, coassociativity, and relations for the unit and counit. The
most interesting is the Frobenius relation, illustrated in Figure 3.

Diffeomorphism classes of cobordisms automatically satisfy these relations, since
they identify composites of cobordisms which are, in fact, diffeomorphic.

Moreover, as a monoidal category, 2Cob must have a tensor product operation.
For objects, this is just the disjoint union: given objects m,n ∈ 2Cob, consisting of
collections of m and n circles respectively, the object m⊗n is the disjoint union of
m and n: a collection of m+n circles. The tensor product of two cobordisms C1 :



16 JEFFREY COLIN MORTON

Figure 3. The Frobenius Relation

m1→n1 and C2 : m2→n2 is likewise the disjoint union of the two cobordisms,
giving C1 ⊗C2 : m1 ⊗m2→n1 ⊗ n2.

This monoidal operation has a symmetry, so in particular 2Cob also includes
the switch cobordism, exchanging the order of two circles by two cylinders (this
gives the symmetry for the monoidal operation). These are required to exist by the
assumption that 2Cob is a free symmetric monoidal category. They are illustrated
in Figure 4 (along with the identity, which is, of course, also required).

Figure 4. Morphisms Required for 2Cob to be a Symmetric
Monoidal Category

Two proofs can be given for the fact than 2Cob is generated by these cobordisms.
Each proof relies on some special conditions satisfied by 2D cobordisms. The first
is that 2-dimensional manifolds with boundary can be completely classified up to
diffeomorphism class by genus and number of punctures. The second is that we
can use the results of Morse theory to decompose any such surface, equipped with
a smooth Morse function into [0, 1], into a composite of pieces, in the sense of
composition of morphisms in 2Cob. In each piece, there is just one “topology
change” (a value in [0, 1] where the preimage changes topology). We will return
to this point when we discuss the question of how to present nCob2 in terms of
generators.

So far, we have described the presentation of 2Cob in terms of generators and
relations, but not yet how the composition operation for morphisms works. The
main idea is that we compose cobordisms by identifying their boundaries. How-
ever, since the morphisms in 2Cob are diffeomorphism classes of manifolds with
boundary, some extra considerations are needed to ensure that the composite is
equipped with a differentiable structure.

In particular, the collaring theorem means that any manifold with boundary, M
can be equipped with a “collar”: an injection φ : ∂M×[0, 1]→M such that φ(x, 0) =
x, ∀x ∈ ∂M . The idea is that, while we can compose topological cobordisms along
their boundaries, we should compose smooth cobordisms M1 and M2 along collars.
This ensures that every point—including points on the boundary of Mi—will have
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a neighborhood with a smooth coordinate chart. Section 5.1 describes this in detail
for a more general setting.

The category 2Cob is particularly interesting in the study of topological quan-
tum field theories (TQFT’s), as formalized by Michael Atiyah [2]. Atiyah’s ax-
iomatic formulation of a TQFT amounts to saying that it is a symmetric monoidal
functor F : 2Cob→Vect. The presentation of 2Cob means that this immediately
defines an algebraic structure with a unit, counit, multiplication, comultiplication,
and identity, which satisfy the same relations as the corresponding cobordisms.
This, together with the fact that F preserves the symmetric monoidal structure of
2Cob means that this structure satisfies the axioms of a commutative Frobenius
algebra. A similar presentation has not been found for nCob for general n.

One may wish to describe an “extended topological quantum field theory” in
the same format. These are topological field theories which are defined not just on
manifolds with boundary, but also on manifolds with corners. This idea is described
by Ruth Lawrence in [61]. In particular, what we are interested in here is that,
instead of using a category of cobordisms between manifolds, we would want to
use some structure of cobordisms between cobordisms between manifolds, which we
tentatively call nCob2. However, to do this, we must use a structure with more
elaborate than a mere category.

Later, we will describe such a structure—a Verity double bicategory, and show
how the putative nCob2 is an example, and indeed a special case of a wider class
of examples.

2.2. TQFT’s as Functors. Atiyah’s formulation of the axioms for a TQFT can
be summarized as follows:

Definition 2. A Topological Quantum Field Theory is a (symmetric) monoidal
functor

(11) Z : 2Cob→Vect

where 2Cob is as described in Section 2.1, and Vect is the category whose objects
are vector spaces and whose arrows are linear transformations.

We note that Vect is naturally made into a monoidal category with the tensor
product ⊗, where V1 ⊗ V2 is generated by objects of the form v1 ⊗ v2, modulo
relations imposing bilinearity. Moreover, 2Cob is a monoidal category as well,
whose monoidal product on objects and morphisms is just the disjoint union of
manifolds and cobordisms, respectively.

In fact, a quantum field theory should give a Hilbert space of states. However,
Hilb, the category of Hilbert spaces and bounded linear maps, is a subcategory of
Vect, so the above is still true.

What, however, does this definition mean?
A TQFT should give a Hilbert space of states for any manifold representing

“space”, and a map from one space of states to another for any cobordism repre-
senting “spacetime” connecting two space slices. Figure 5 shows an example in the
case where space is 1-dimensional and spacetime is 2-dimensional:

The TQFT should have the following properties:

• The Hilbert space assigned to a disjoint union of spaces S1∐S2 will be the
tensor product of the spaces assigned to each, Z(S1)⊗Z(S2), and therefore
also Z(∅) = C (a basic feature of quantum theories)
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1Z(S )

2Z(S )

Z(M)

S1

S2

M

Figure 5. Effect of a TQFT

• The linear maps assigned to cobordisms respect “composition” of space-
times, so M1 followed by M2 is assigned the map Z(M2) ◦ Z(M1), where
“followed by” means the ending space of M1 is the beginning space of M2.

As remarked in Section 2.1, 2Cob is a free symmetric monoidal category on a
Frobenius object. In Vect, such an object is called a Frobenius algebra: in fact, a
2D TQFT Z is equivalent to a choice of Frobenius algebra, namely the image of
the circle uvder Z.

In general higher dimensions, no equally straightforward description of an n-
dimensional TQFT is known. To provide one would require a presentation of nCob
in terms of generators and relations (for both objects and morphisms).

Lauda and Pfeiffer [59] do provide such a presentation a similar, though more
complicated, characterization of 2-dimensional open-closed TQFT’s. In these, we
do not assume that the manifolds representing spaces have no boundary. Lauda’s
doctoral thesis [58] develops this further.

2.3. The Fukuma-Hosono-Kawai Construction and Connections. Frobe-
nius algebras are semisimple algebras A (direct sums of simple algebras). These
are characterized by having a nondegenerate linear pairing:

(12) g : A⊗A→C
If A is a matrix algebra, then such a g is given by the Killing form, or trace:
g(a, b) = tr(LaLb). The nondegeneracy of this pairing means that it gives an
isomorphism between A and A∗.

Each algebra A of this kind gives a TQFT whose effects can be described in an
explicit and combinatorial way. This is the construction of Fukuma, Honoso, and
Kawai [43]. We will be particularly interested in the case where the semisimple
algebra A is the group algebra C[G] for some finite group G.

Now we want to see how to get a TQFT Z : 2Cob→Vect from any such algebra
A, keeping in mind the example A = C[G]. To do this, we first construct a map

Ẑ : ∆2Cob→Vect, where ∆2Cob is the category of triangulated manifolds and
cobordisms, then show it is independent of the choice of triangulation.

To begin with, given a triangulated cobordism M from S1 to S2, (so M , S1 and
S2 are all triangulated), label the dual graph with copies of A.

So each edge of a triangle (hence of the dual graph) is labelled by A and each
face of a triangle (hence each vertex of the dual graph) by an operator m.
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1Z(S )^

2Z(S )^

Z(M)^

Figure 6. The Fukuma-Honoso-Kawai Construction
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Figure 7. Multiplication Operators Assigned to Triangles

In the case where the semisimple algebra isC[G], we can write choices of vector in
a basis consisting of group elements. So labellings of the dual edges can be described
in terms of a basis where the dual edges are labelled with group elements.

2.4. Pachner Moves in 2D. How does Ẑ, acting on ∆2Cob, give a TQFT act-
ing on 2Cob? First, notice that it depends only on the topology of M , and the
triangulation on the boundary, not in the interior.

This is because Alexander’s Theorem says that to pass between any two
triangulations of the same compact 2-manifold, it is enough to repeatedly apply
the two Pachner moves—the 2-2 move and the 1-3 move (and their inverses):

and

Figure 8. Pachner Moves

This will prove that the linear map we construct is independent of the triangula-
tion chosen. In particular, the 2-2 move does not affect the outcome of composition,
on applying Ẑ, since it passes from

(13) V ⊗ V ⊗ V
1⊗m
−→ V ⊗ V

m
−→V
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to

(14) V ⊗ V ⊗ V
m⊗1
−→ V ⊗ V

m
−→V

These are the same by associativity.
The 1-3 move has no effect precisely when (A, η,m) is semisimple. This comes

from associativity and the “bubble move”:

= =

Figure 9. The Bubble Move

We can think of the Pachner moves as coming from tetrahedrons. Given a trian-
gulation, attach a tetrahedron along one, two, or three triangular faces. The move
consists of replacing the attached faces with the remaning faces of the tetrahedron.
We can think of this as “evolving the triangulation by” that tetrahedron:

and

Figure 10. Pachner Moves as Tetrahedra

Any two triangulations are homologous—can be connected by a series of such
moves since there is no nontrivial third homology of a 2D surface: any change in
triangulation we want will be the boundary of some collection of tetrahedra. (A
triangulation of a 2-dimensional cobordism is a combination of 0, 1, and 2-chains—
Pachner moves correspond to 3-chains).

Now, we know that a TQFT is determined by its effect on the generators of
2Cob, so we want to know the space of states on S1, which is a generator for
objects. One observation is that the image of the generator S1 × [0, 1] is id, the
identity map on Z(S1).

Consider the following triangulation of S1 × [0, 1]:

Ẑ assigns A to the top and bottom circles, but says that we should have

(15) m ◦B ◦m† = id

on Z(S) ⊂ A. This means that Z(S) is a subset of the centre of A.
We know that the identity map in A must come from the cylinder, so define

(16) Z(S1) = Ran(Ẑ(S1 × [0, 1]))

To get a TQFT Z, we restrict Ẑ to Z(S1). This is a projection operator, and its
range is in Z(A). Project the space of states for a triangulated circle onto this to
get the space of states for the circle under Z (note that there is only one way to do



EXTENDED TQFT’S AND QUANTUM GRAVITY 21

A A

A A

A

A

Figure 11. Identity or Projection Operator?

this, independent of which triangulation of the cylinder we use to get the projection
operator).

So it is well-defined to say:

(17) Z(M) = Ẑ(M)|Z(S1)

since we always have Ẑ(M)(Z(S1)) = Z(S2). (One can retriangulateM to compose
with the projection before and after, without changing the result.)

Then one can show that this Z defines a symmetric monoidal functor from 2Cob
to Vect, namely a TQFT.

2.5. TQFT’s and Connections. The FHK construction of a TQFT has a feature
which may not at first be obvious. To the circle, Z assigns a Hilbert space, but in
a way that has a canonical choice of basis. This is Z(S1), the centre of the group
algebra C[G], or simply C[Cent(G)], the vector space spanned by the centre of the
group G. So a basis for the space of states is just the set of ways of assigning to
the circle an element of the group G which happens to be in the centre of G.

One way to think of this is as a G-connection on the circle - so that the space of
states is a free vector space on the set of G-connections on S1. This way of thinking
of what Z produces is good because it will hold up even when we consider manifolds
B of higher dimension (and codimension). In particular, if a TQFT gives a space
of states from the set of connections on B, given a map from the circle into B, any
connection assigns to this loop a group element, or holonomy, up to conjugation.

So in order to look at extended TQFT’s as examples of a categorification of the
concet of a TQFT, it is useful to take this point of view relating the TQFT to
connections. We point out, however, that there is a categorified analog of the FHK
construction more or less directly. We expect that this would provide a “state-sum”
point of view on the theory of a connection on a manifold which our extended TQFT
will in fact involve. In fact, this is understood to a considerable degree, but this
point of view is awkward because it involves the categorified versions of associativity
- Stasheff’s associahedra [79]. These play the role of Pachner moves in higher
dimensions. We could proceed with this categorified version of the construction,
when G is a finite group.

It turns out that a natural generalization of the FHK construction gives a theory
equivalent to the (untwisted) Dijkgraaf-Witten model [30]. This is a topological
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gauge theory, which crucially involves a (flat) connection on a manifold. We will
discuss this in more detail in Section 7.1, and explore how an extended TQFT can
be constructed by taking a categorifed version of the (quantized) theory of a flat
connection on manifolds and cobordisms.

3. Bicategories and Double Categories

We will want to give a description of a Verity double bicategory, which is a weak-
ened version of the concept of a double category, in order to describe cobordisms
with corners. Weakening a concept X in category theory generally involves creating
a new concept in which equations in the original concept are replaced by isomor-
phisms. Thus, we say that the old equations hold only “up to” isomorphism in the
weak version of X , and say that when they hold with equality, we have a “strict
X”. Thus, before describing our newly weakened concept, it makes sense to recall
how this process works, and examine the strict form of the concept we want to
weaken. We also want to see what the weakening process entails. So we begin by
reviewing bicategories and double categories.

3.1. 2-Categories. A category E is enriched over a category C (which must
have products) when for x, y ∈ E we have hom(x, y) ∈ C. A special case of this
occurs in “closed” categories, which are enriched over themselves—examples include
Set (since there is a set of maps between any two sets) and Vect (since the linear
operators between two vector spaces form a vector space).

A 2-category is a category enriched over Cat. That is, if C2 is a 2-category,
and x, y ∈ C2), then hom(x, y) ∈ Cat. Thus, there are sets of objects and mor-
phisms in hom(x, y) itself, satisfying the usual category axioms. We describe a
2-category as having objects, morphisms between objects, and 2-morphisms
between morphisms. The morphisms of C2 are the objects of the hom-categories,
and the 2-morphisms of C2 are the morphisms of the hom-categories. We depict
these as in Diagram (2). There is a composition operation for morphisms in these
hom categories, which we think of as “vertical” composition, denoted ·, between
2-morphisms. Furthermore, for all x, y, z ∈ C2, the composition operation

(18) ◦ : hom(x, y)× hom(y, z)→hom(x, z)

must be a functor between hom-categories. So in particular this operation applies
to both objects and morphisms in hom categories, and we think of these as “hori-
zontal” composition for both morphisms and 2-morphisms. The requirement that
this be a functor means that the interchange law holds:

(19) (α ◦ β) · (α′ ◦ β′) = (α · α′) ◦ (β · β′)

Now, in a 2-category, the associative law holds strictly: that is, for morphisms
f ∈ hom(w, x), g ∈ hom(x, y), and h ∈ hom(y, z), we have the two possible triple-
compositions in hom(w, z) the same, namely f ◦ (g ◦ h) = (f ◦ g) ◦ h. This is
one of the axioms for a category—that is, a category enriched over Set. Since a
2-category is enriched over Cat, however, a weaker version of this rule is possible,
since hom(w, z) is no longer a set in which elements can only be equal or unequal:
it is a category, where it is possible to speak of isomorphic objects. This fact leads
to the notion of bicategories.
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3.2. Bicategories. Once we have the concept of a 2-category, we can weaken this
concept, giving the idea of a bicategory. The definition is similar to that for a 2-
category, but we only insist that the usual equations should be natural isomorphisms
(satisfying some equations). That is, the following diagrams should commute up to
natural isomorphisms:

(20) hom(w, x) × hom(x, y)× hom(y, z)

◦×1

��

1×◦
// hom(w, x) × hom(x, z)

◦

��

hom(w, y)× hom(y, z)
◦

// hom(w, z)

and

(21) hom(x, y)× 1

π1

))RRRRRRRRRRRRR

id× !

��

hom(x, y)× hom(x, x)
◦ // hom(x, y)

and

(22) 1× hom(x, y)

π2

))RRRRRRRRRRRRR

!× id

��

hom(y, y)× hom(x, y)
◦ // hom(x, y)

That is: given (f, g, h) ∈ hom(w, x) × hom(x, y) × hom(y, z), there should be
an isomorphism af,g,h ∈ hom(w, z) with af,g,h : (f ◦ g) ◦ h→ f ◦ (g ◦ h); and
isomorphisms rf : f ◦ 1x, lf : 1y ◦ f . The equations these satisfy are coherence
laws. MacLane’s Coherence Theorem shows that all such equations follow from
two generating equations: the pentagon identity, and the unitor law:

In a category, the associativity property stated that two composition operations
can be performed in either order and the results should be equal: equality is the only
sensible relation between a pair of morphisms in a category. There is an analogous
statement for the associator 2-morphism: two different ways of composing it should
yield the same result (since equality is the only sensible relation between a pair of
2-morphisms in a bicategory). This property is the pentagon identity:

(23)

(f ◦ g) ◦ (h ◦ j)

f ◦ (g ◦ (h ◦ j))

f ◦ ((g ◦ h) ◦ j)(f ◦ (g ◦ h)) ◦ j

((f ◦ g) ◦ h) ◦ j

af,g,h◦j

((PPPPPPPPPPPPPPP

1f◦ag,h,j

GG������������

af,g◦h,j

//

af,g,h◦1j

��
//

//
//

//
//

//

af◦g,h,j

66nnnnnnnnnnnnnnn
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Similarly, the unit laws satisfy the property that the following commutes:

(24) (g ◦ 1y) ◦ f
ag,1y,f

//

rg×1f

��

g ◦ (1 ◦ f)

1g×lf
wwppppppppppp

g ◦ f

This last change is the sort of weakening we want to apply to the concept of
a double category. Following the same pattern, we will first describe the strict
notion in Section 3.4, before considering how to weaken it, in Chapter 4. First,
however, we will recall a standard, quite general, example of bicategory, which we
will generalize to give examples of double bicategories in Section 4.3.

3.3. Bicategories of Spans. Jean Bénabou [16] introduced bicategories in a 1967
paper, and one broad class of examples introduced there comes from the notion of
a span.

Definition 3. (Bénabou) Given any category C, a span (S, π1, π2) between ob-
jects X1, X2 ∈ C is a diagram in C of the form

(25) P1 S
π1oo

π2 // P2

Given two spans (S, s, t) and (S′, s′, t′) between X1 and X2 between a morphism

of spans is a morphism g : S→S′ making the following diagram commute:

(26) S
π1

~~||
||

||
|| π2

  B
BB

BB
BB

B

g

��

X1 S′
π′

1

oo

π′

2

// X2

Composition of spans S from X1 to X2 and S′ from X2 to X3 is given by a
pullback: that is, an object R with maps f1 and f2 making the following diagram
commute:

(27) R
f1

~~}}
}}

}}
}} f2

!!B
BB

BB
BB

B

S
π1

~~~~
~~

~~
~~ π2

  @
@@

@@
@@

@ S′

π′

2

~~}}
}}

}}
}} π′

3

  B
BB

BB
BB

B

X1 X2 X3

which is terminal among all such objects. That is, given any other Q with maps g1
and g2 which make the analogous diagram commute, these maps factor through a
unique map Q→R. R becomes a span from X1 to X3 with the maps π1 ◦ f1 and
π2 ◦ f2.

The span construction has a dual concept:

Definition 4. A cospan in C is a span in Cop, morphisms of cospans are mor-
phisms of spans in Cop, and composition of cospans is given by pullback in Cop.
That is, by a pushout in C.
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One fact about (co)spans which is important for our purposes is that any category
C with limits (colimits, respectively) gives rise to a bicategory of spans (or cospans).
This relies in part on the fact that the pullback is a universal construction (universal
properties of Span(C) are discussed by Dawson, Paré and Pronk [29]).

Remark 1. [16], ex. 2.6 Given any category C with all limits, there is a bicat-
egory Span(C), whose objects are the objects of C, whose hom-sets of morphisms
Span(C)(X1, X2) consist of all spans between X1 and X2 with composition as de-
fined above, and whose 2-morphisms are morphisms of spans. Span(C) as defined
above forms a bicategory (Cosp(C), of cospans similarly forms a bicategory).

This is a standard result, first shown by Jean Bénabou [16], as one of the first
examples of a bicategory. We briefly describe the proof:

The identity for X is X
id
←X

id
→X , which is easy to check.

The associator arises from the fact that the pullback is a universal construction.
Given morphisms in Span(C) f : X→Y , g : Y →Z, h : Z→W , the composites
((f ◦ g) ◦ h) and (f ◦ (g ◦ h)) are pullbacks consisting of objects O1 and O2 with
maps into X and W . The universal property of pullbacks gives an isomorphism
between O1 and O2. These isomorphisms satisfy the pentagon identity since they
are unique (in particular, both sides of the pentagon give the same isomorphism).

It is easy to check that hom(X1, X2) is a category, since it inherits all the usual
properties from C.

3.4. Double Categories. The idea of a double category extends that of a category
into two dimensions in a different way than does the concept of bicategory. A double
category consists of:

• a set O of objects
• horizontal and vertical categories, whose sets of objects are both O
• for any diagram of the form

(28) x
φ

//

f

��

x′

f ′

��

y
φ′

// y′

a collection of square 2-cells, having horizontal source and target f and f ′,
and vertical source and target φ and φ′

The 2-cells can be composed either horizontally or vertically in the obvious way.
We denote a 2-cell filling the above diagram like this:

(29) x
φ

//

f

��

x′

f ′

��

y
φ′

//

@@@@ �$
S

y′

and think of the composition of 2-cells in terms of pasting these squares together
along an edge. The resulting 2-cell fills a square whose boundaries are the corre-
sponding composites of the morphisms along its edges.
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Moskaliuk and Vlassov [73] discuss the application of double categories to mathe-
matical physics, particularly TQFT’s, and dynamical systems with changing bound-
ary conditions—that is, with inputs and outputs. Kerler and Lyubashenko [54]
describe extended TQFT’s as “double pseudofunctors” between double categories.
This formulation involves, among other things, a double category of cobordisms
with corners—we return to a weakening of this idea in Section 5.3

A double category can be thought of as an internal category in Cat. That is, it
is a model of the theory of categories, denoted Th(Cat), in Cat. This Th(Cat)
consists of a category containing all finite limits, and having two distinguished
objects called Obj and Mor with morphisms of the form:

(30) Mor
s

++

t

33 Obj

and

(31) Obj
id // Mor

subject to some axioms. In particular, the composition operation is a partially
defined operation on pairs of morphisms. In particular, there is a collection of
composable pairs of morphisms, namely the fibre product Pairs = Mor×Obj Mor,
which is a pullback of the two arrows from Mor to Obj. So Pairs is an equalizer
in the following diagram:

(32) Mor
t

""F
FF

FF
FF

F

Pairs
i // Mor2

π1

;;wwwwwwww

π2

##G
GGGGGGG Obj

Mor

s
<<yyyyyyyy

(Note that we assume the existence of pullbacks, here - in fact, Th(Cat) is a finite
limits theory.) The composition map ◦ : Pairs→Mor satisfies the usual properties
for composition.

There is also an identity for each object: there is a map Obj
1
→Mor, such that

for any morphism f ∈ Mor, we have 1s(f) and 1t(f) are composable with f , and the
composite is f itself.

A model of Th(Cat) in Cat is a (limit-preserving) functor

F : Th(Cat)→Cat

This gives a structure having a category Ob of objects and a category Mor of
morphisms, with two functors s (“source”) and t (“target”) satisfying the usual
category axioms. We can describe composition as a pullback construction in this
category, which makes sense since the functor preserves finite limits (including
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pullbacks):

(33) F (Mor)

c1

yysssss
sss

ss c2

%%KKKK
KKK

KKK

�� ��

F (Mor)

s

yysssssssss
t

%%KK
KKK

KKKKK
F (Mor)

s

yysss
sss

sss
s

t

%%K
KKKKKKKK

F (Obj) F (Obj) F (Obj)

A category is a model of the theory Th(Cat) in Set, and we understand this to
mean that when two morphisms f and g have the target of f the same as the source
of g, there is a composite morphism from the source of f to the target of g. In the
case of a double category, we have a model of Th(Cat) in Cat, so that F (Obj) and
F (Mor) are categories and F (s) and F (t) are functors, we have the same condition
for both objects and morphisms, subject to the compatibility conditions for these
two maps which any functor must satisfy.

We thus have sets of objects and morphisms in Ob, which of course must satisfy
the usual axioms. The same is true for Mor. The category axioms for the double
category are imposed in addition to these properties, for the composition and iden-
tity functors. Functoriality implies compatibility conditions between the category
axioms in the two directions. The result is that we can think of both the objects
in Mor and the morphisms in Ob as acting like morphisms between the objects
in Ob, in a way compatible with the source and target maps. A double category
can be, and often is, thought of as including the morphisms of two (potentially)
different categories on the same collection of objects. These are the horizontal and
vertical morphisms, intuitively capturing the picture:

(34) x
φ

//

f

��

x′

f ′

��

y
φ̂

// y′

Here, the objects in the diagram can be thought of as objects in F (Obj), the
vertical morphisms f and f ′ can be thought of as morphisms in F (Obj) and the

horizontal morphisms φ and φ̂ as objects in F (Mor). (In fact, there is enough
symmetry in the axioms for an internal category in Cat that we can adopt either
convention for distinguishing horizontal and vertical morphisms). However, we also
have morphisms in Mor. We represent these as two-cells, or squares , like the 2-cell
S represented in (29).

The fact that the composition map ◦ is a functor means that horizontal and
vertical composition of squares commutes.

3.5. Topological Examples. We can illustrate simple examples of bicategories
and double categories in a topological setting, namely homotopy theory. This
was the source of much of the original motivation for higher-dimensional category
theory. Moreover, as we have already remarked in Section 2.1, there are close
connections between cobordism and homotopy. These examples will turn out to
suggest how to describe Verity double bicategories of cobordisms.
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Our first example is one of the original motivations for bicategories.

Example 1. Given a space S in the category Top of topological spaces, we might
wish to define a category Path(S) whose objects are points of X , and whose mor-
phisms are paths in S. That is, Path(S) has:

• objects: points in S
• morphisms: paths γ : [m,n]→S

Where such a path is thought of as a morphism from γ(m) to γ(n). These are
parametrized paths: so suppose we are given two paths in Path(S), say γ1 :
[m1, n1]→S from a to b and γ2 : [m2, n2]→S from b to c. Then the compos-
ite is a path γ2 ◦ γ1 : [m1, n1 + n2 −m2]→S, given by:

(35) γ2 ◦ γ1(x) =

{

γ1(x) if x ∈ [m1, n1)

γ2(x− n1 +m2) if x ∈ [n1, n1 + n2 −m2]

This gives a well-defined category Path(S), but has the awkward feature that
our morphisms are not paths, but paths equipped with parametrization. So another
standard possibility is to take morphisms from a to b to be paths γ : [0, 1]→S.γ :
[0, 1]→X such that γ(0) = a and γ(1) = b. The obvious composition rule for
γ1 ∈ hom(a, b) and γ2 ∈ hom(b, c) is that

(36) γ2 ◦ γ1(x) =

{

γ1(2x) if x ∈ [0, 1
2 )

γ2(2x− 1) if x ∈ [ 12 , 1]

However, this composition rule is not associative, and resolving this involves the
use of a bicategory, either implicitly or explicitly. We get this bicategory Path2(S),
by first defining, for a, b ∈ S, a category hom(a, b) with:

• objects: paths from a to b
• morphisms: homotopies between paths, namely a homotopy from γ1 to
γ2 is H : [0, 1] × [0, 1]→S such that H(x, 0) = γ1(x), H(x, 1) = γ(x),
H(0, y) = a, H(1, y) = b for all (x, y) ∈ [0, 1]× [0, 1].

Then we have a unit law for the identity morphism (the constant path) at each
point, and an associator for composition. Both of these are homotopies which
reparametrize composite paths.

Finally, we note that, if we define horizontal and vertical composition of homo-
topies in the same way as above (in each component), then this composition is
again not associative. So to get around this, we say that the bicategory we want
has its hom-categories hom(a, b), where the morphisms are isomorphism classes of

homotopies. The isomorphisms in question will not be homotopies themselves (to
avoid extra complications), but rather smooth maps which fix the boundary of the
homotopy square.

We call the resulting bicategory Path2(S).

A similar construction is possible for a double category.

Example 2. We have seen that a double category it is rather analogous to a
bicategory, so we would like to construct one analogous to the bicategory in Example
1. To do this, we construct a model having the following:

• A category Obj of objects is the path category Path(S):
• A category Mor of morphisms: this has the following data:

– objects: paths γ : [m,n] in S
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– morphisms: homotopies H : [p, q] × [m,n] between paths (these have
source and target maps which are just s : H(−,−)→H(−,m) and
t : H(−,−)→H(−, n).

These categories have source and target maps s and t which are functors
from Mor to Obj. The object map for s is just evaluation at 0, and for
t it is evaluation at 1. The morphism maps for these functors are s :
H(−,−)→H(p,−) and t : H(−,−)→H(q,−).

We call the result the double category of homotopies, H(S).

We observe here that the double category H(S) is similar to the bicategory
Path2(S) in one sense. Both give a picture in which objects are points in a topo-
logical space, morphisms are 1-dimensional objects (paths), and higher morphisms
involve 2-dimensional objects (homotopies). There are differences, however: the
most obvious is that Path2(S) involves only homotopies with fixed endpoints: its
2D objects are bigons , whereas in H(S) the 2D objects are “squares” (or images of
rectangles under smooth maps).

A more subtle difference, however, is that, in order to make composition strictly
associative in H(S), it was necessary to change how we parametrize the homotopies.
There are no associators here, and so we make sure composition is strict by not
rescaling our source object (the product of two intervals) as we did in Path2(S).

This is rather unsatisfactory, and in fact improving it leads to a general definition
of a double bicategory, which has a large class of examples, namely double cospans. A
special, restricted case of these is the double bicategory of cobordisms with corners
we want.

4. Verity Double Bicategories

The term double bicategory seems to have been originally introduced by Dominic
Verity [86], and the structure it refers to is the one we want to use. There is
some ambiguity here since the term double bicategory appears to describe is an
internal bicategory in Bicat (the category of all bicategories). This is analogous
to the definition of double category. Indeed, it is what we will mean by a double
bicategory, and we discuss these in Section A. Since the two are closely related,
and both will be important for us, we will refer to double bicategories in the sense
of Verity by the term Verity double bicategories, while reserving double bicategory
for the former. For more discussion of the relation between these, see Section A.

We wish to describe a structure which is sufficient to capture the possible com-
positions of cobordisms with corners just as 2Cob does for cobordisms. These
have “horizontal” composition along the manifolds with boundary which form their
source and target. They also have “vertical” composition along the boundaries of
those manifolds and of the cobordisms joining them (which, together, again form
cobordisms) . However, to allow the boundaries to vary, we do not want to consider
them as diffeomorphism classes of cobordisms, but simply as cobordisms. However,
composition is then not strictly associative, but only up to diffeomorphism.

Thus, we want something like a double category, but with weakened axioms,
just as bicategories were defined by weakening those for a category. The concept
of a “weak double category” has been defined (for instance, see Marco Grandis
and Robert Paré [45], and Martins-Ferreira’s [71] discussion of them as “pseudo-
categories”). Thomas Fiore [35] describes these as “Pseudo Double Categories”,
arising by “categorification” of the theory of categories, and describes examples
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motivated by conformal field theory. A detailed discussion is found in Richard
Garner’s Ph.D. thesis [44]. In these cases, the weakening only occurs in only one
direction—either horizontal or vertical. That is, the associativity of composition,
and unit laws, in that direction apply only up to certain higher morphisms, called
associators and unitors. In the other direction, the category axioms hold strictly.
In a sense, this is because the weakening uses the squares of the double category as
2-morphisms: specifically, squares with two sides equal to the identity. Trying to
do this in both directions leads to some difficulties.

In particular, if we have associators for horizontal morphisms given by squares
of the form:

(37) a
f ;g

//

1a

��

������af,g,h

c
h // d

1d

��

a
f

// b
g;h

// d

then unless composition of vertical morphisms is strict, then to make a equation
(for instance, the pentagon equation) involving this square, we would need to use
unit laws (or associators) in the vertical direction to perform this composition. This
would again be a square with identities on two sides, and the problem arises again.
In fact, there is no consistent way to do this. Instead, we need to introduce a new
kind of 2-morphism separate from the squares, as we shall see in Section 4.1. The
result is what Dominic Verity has termed a double bicategory [86].

The problem of weakening the concept of a double category so that the unit and
associativity properties hold up to higher-dimensional morphisms can be contrasted
with a different approach. One might instead try to combine the notions of bicat-
egory and double category in a different way. This is by “doubling” the notion of
bicategory, in the same way that double categories did with the notion of category.
Just as a double category is an internal category in Cat, the result would be an
internal bicategory in Bicat.

We would like to call this a double bicategory: however, this term has already
been used by Dominic Verity to describe the structure we will mainly be interested
in. Since the former concept is also important for us in certain lemmas, and is most
naturally called a double bicategory, we will refer to the latter as a Verity double
bicategory. For more discussion of the relation between these, see Section A.

4.1. Definition of a Verity Double Bicategory. The following definition of a
Verity double bicategory is due to Dominic Verity [86], and is readily seen as a
natural weakening of the definition of a double category. Just as the concept of
bicategory weakens that of 2-category by weakening the associative and unit laws,
Verity double bicategories will do the same for double categories. The following
definition can be contrasted with that for a double category in Section 3.4.

Definition 5. (Verity) A Verity double bicategory C is a structure consisting
of the following data:

• a class of objects Obj,
• horizontal and vertical bicategories Hor and Ver having Obj as their

objects
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• for every square of horizontal and vertical morphisms of the form

(38) a
h //

v

��

b

v′

��

c
h′

// d

a class of squares Squ, with maps sh, th : Squ→Mor(Hor) and sv, tv :
Squ→Mor(Ver), satisfying an equation for each corner, namely:

s(sh) = s(sv)(39)

t(sh) = s(tv)

s(th) = t(sv)

t(th) = t(tv)

The squares should have horizontal and vertical composition operations, defining
the vertical composite F ⊗V G

(40) x //

��

x′

��

y //

��

@@@@ �$
F

y′

��

z //

@@@@ �$
G

z′

= x //

��

x′

��

z //

???? �#
F⊗V G

z′

and horizontal composite F ⊗H G:

(41) x //

��

y

��

// z

��

x′ //

???? �#
F

y′ //

???? �#
G

z′

= x //

��

z

��

x′ //

==== �"
F⊗HG

z′

The composites have the usual relation to source and target maps, satisfy the inter-
change law

(42) (F ⊗V F ′)⊗H (G⊗V G′) = (F ⊗H G)⊗V (F ′ ⊗H G′)

and there is a unit for composition of squares:

(43) x
1x //

f

��

x

f

��
y

1y
//

???? �#
1f

y

(and similarly for vertical composition).
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There is a left and right action by the horizontal and vertical 2-morphisms on
Squ, giving F ⋆V α,

(44) x //

��

y

��
vv

x′ //

???? �#
F

y′

+3
α

= x //

��

y

��

x′ //

???? �#
F⋆V α

y′

(and similarly on the left) and F ⋆H α,

(45) x //
��

��

y

��

x′ //

???? �#
F

y′

α
��

= x //

��

y

��

x′ //

???? �#
α⋆HF

y′

The actions also satisfy interchange laws:

(46) (F ⊗H F ′) ⋆H (α⊗V α′) = (F ⋆H α)⊗h (F ′ ⋆H α′)

(and similarly for the vertical case) and are compatible with composition:

(47) (F ⊗H G) ⋆V α = F ⊗H (G ⋆V α)

(and analogously for vertical composition). They also satisfy additional compatibil-
ity conditions: the left and right actions of both vertical and horizontal 2-morphisms
satisfy the “associativity” properties,

(48) α ⋆ (S ⋆ β) = (α ⋆ S) ⋆ β

for both ⋆H and ⋆V . Moreover, horizontal and vertical actions are independent:

(49) α ⋆H (β ⋆V S) = β ⋆V (α ⋆H S)

and similarly for the right action.
Finally, the composition of squares agrees with the associators for composition

by the action in the sense that given three composable squares F , G, and H:

(50) x

��

h◦(g◦f)
//

(h◦g)◦f

��
y

��

x′
h′◦(g′◦f ′)

//

FFFF �'
(F⊗HG)⊗HH

y′

af,g,h

KS

= x
(h◦g)◦f

//

��

y

��

x′
(h′◦g′)◦f

//

h′◦(g′◦f)

CC

FFFF �'
F⊗H(G⊗HH)

y′

af′,g′,h′

��
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and similarly for vertical composition. Likewise, unitors in the horizontal and ver-
tical bicategories agree with the identity for composition of squares:

(51) x

g

��

f
//

f

��
y

g′

��

1y

// y

��

g′

��

x′
f ′

//

???? �#
F

y′
1y′

//

???? �#
1g′

y′

lf

KS

= x

g

��

1x //

g

��

f
// y

g′

��

x′
1x′

//

f ′

??

>>>> �#
1g

x′

???? �#
F

f ′

// y′

rf′

��

and similarly for vertical units.

We will see in Chapter 5 that the higher categories defined this way are well
suited to dealing with cobordisms with corners. In Section A we will consider how
this definition arises as a special case of a broader concept of double bicategory
which we define there. For now, in Section 4.2, we will consider how Verity double
bicategories can give rise to ordinary bicategories.

4.2. Bicategories from Double Bicategories. There are numerous connections
between double categories and bicategories (or their strict form, 2-categories).
One is Ehresmann’s double category of quintets, relating double categories to 2-
categories: a double category by taking the squares to be 2-morphisms between
composite pairs of morphisms, such as α : g′ ◦ f→ f ′ ◦ g.

Furthermore, it is well known that double categories can yield 2-categories in
three different ways. Two obvious cases are when there are only identity horizontal
morphisms, or only vertical morphisms, respectively, so that squares simply collapse
into bigons with the two nontrivial sides. Notice that it is also true that a Verity
double bicategory in which Hor is trivial (equivalently, if Ver is trivial) is again
a bicategory. The squares become 2-morphisms in the obvious way, the action of
2-morphisms on squares then is just composition, and the composition rules for
squares and bigons are the same. The result is clearly a bicategory.

The other, less obvious, case, is when the horizontal and vertical categories on
the objects are the same: this is the case of path-symmetric double categories, and
the recovery of a bicategory was shown by Brown and Spencer [19]. Fiore [35]
shows how their demonstration of this fact is equivalent to one involving folding
structures.

In this case we again can interpret squares as bigons by composing the top and
right edges, and the left and bottom edges. Introducing identity bigons completes
the structure. These new bigons have a natural composition inherited from that
for squares. It turns out that this yields a structure satisfying the definition of
a 2-category. Here, our goal will be to show half of an analogous result, that a
Verity double bicategory similarly gives rise to a bicategory when the horizontal
and vertical bicategories are equal. We will also show that a double bicategory for
which the horizontal (or vertical) bicategory is trivial can be seen as a bicategory.
The condition that Hor = Ver holds in our general example of double cospans:
both horizontal and vertical bicategories in any 2Cosp(C)0 are just Cosp(C).
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Theorem 1. Any Verity double bicategory (Obj,Hor,Ver,Squ,⊗H ,⊗V , ⋆H , ⋆V )
for which Hor = Ver produces a bicategory by taking squares to be 2-cells.

Proof. We begin by defining the data of this bicategory, which we call B. Its objects
and morphisms are the same as those of Hor (equivalently, Ver). We describe the
2-morphisms by observing that B must contain all those in Hor (equivalently, Ver),
but also some others, which correspond to the squares in Squ.

In particular, given a square

(52) a
f

//

g

��

b

g′

��

c
f ′

//

@@@@ �$
S

d

there should be a 2-morphism

(53) a

g′◦f

%%

f ′◦g

99 dS
��

The composition of squares corresponds to either horizontal or vertical compo-
sition of 2-morphisms in B, and the relation between these two is given in terms of
the interchange law in a bicategory:

Given a composite of squares,

(54) x
f

//

φx

��

y

φy

��

g
// z

φz

��

x′
f ′

//

???? �#
F

y′
g′

//

???? �#
G

z′

there will be a corresponding diagram in B:

(55) x
f

//

φx◦f ′

@@
y

φy
//

φz◦g

��

y′
g′

// z′

F��

G��

Using horizontal composition with identity 2-morphisms (“whiskering”), we can
write this as a vertical composition:

(56) x

φz◦g◦f

!!

g′◦φy◦f

//

g′◦f ′◦φx

== z
′

G◦1f
��

1g′ ◦F��

So the square F ⊗H G corresponds to (1 ◦G) · (F ◦ 1) for appropriate identities
1. Similarly, the vertical composite of F ′ ⊗V G′ must be the same as (1 ◦F ) · (G ◦
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1). Thus, every composite of squares, which can all be built from horizontal and
vertical composition, gives a corresponding composite of 2-morphisms in B, which
are generated by those corresponding to squares in Squ, subject to the relations
imposed by the composition rules in a bicategory.

To show the Verity double bicategory gives a bicategory, it now suffices to show
that all such 2-morphisms not already in Hor arise as squares (that is, the struc-
ture is closed under composition). So suppose we have any composable pair of
2-morphisms which arise from squares. If the squares have an edge in common,
then we have the situation depicted above (or possibly the corresponding form in
the vertical direction). In this case, the composite 2-morphism corresponds exactly
to the composite of squares, and the axioms for composition of squares ensure that
all 2-morphisms generated this way are already in our bicategory. In particular, the
unit squares become unit 2-morphisms when composed with left and right unitors.

Now, if there is no edge in common to two squares, the 2-morphisms in B must
be made composable by composition with identities. In this case, all the identities
can be derived from 2-morphisms in Hor, or from identity squares in Squ (inside
commuting diagrams). Clearly, any identity 2-morphism can be factored this way.
Then, again, the composite 2-morphisms in B will correspond to the composite of
all such squares and 2-morphisms in Squ and Hor.

Finally, the associativity condition (50) for the action of 2-morphisms on squares
ensures that composition of squares agrees with that for 2-morphisms, so there are
no extra squares from composites of more than two squares. �

This allows us to think of nCob2 not only as a Verity double bicategory, but in
the more familiar form of a bicategory.

It is also worth considering here the situation of a double bicategory with hori-
zontal bicategory trivial (i.e. in which all horizontal morphisms and 2-morphisms
are identities). In this case, one can define a 2-morphism from a square with and
bottom edges being identities, whose source is the object whose identity is the cor-
responding edge, and similarly for the target. The composition rules for squares in
the vertical direction, then, are just the same as those for a bicategory. Likewise,
the axioms for action of a 2-morphism on a square reduce to the composition laws
for a bicategory if one replaces the square by a 2-cell.

Next we describe the class of examples we will use to develop a double bicategory
of cobordisms with corners.

4.3. Double Cospans. Now we construct a class of examples of double bicat-
egories. These examples are analogous to the example of bicategories of spans,
discussed in Section 3.3. These span-ish examples of Verity double bicategories
are will give the Verity double bicategory of cobordisms with corners as a special
case, which is similar in flavour to the topological examples of bicategories and
double categories in Section 3.5. However, these will be based on cospans. Cospans
in C are the same as spans in the opposite category, Cop. In Remark 1 we de-
scribed Bénabou’s demonstration that Span(C) is a bicategory for any category C
with pullbacks. Similarly, there is a bicategory of cospans in a category C, with
pushouts.

There will be an analogous fact about our example of a double bicategory: dou-
ble cospans, described explicitly in Section A. Here, we are interested in a more
restricted structure:
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Definition 6. For a category C with finite limits, the Verity double bicategory
2Cosp(C)0, has:

• the objects are objects of C
• the horizontal and vertical bicategories Hor = Ver are both equal to a

sub-bicategory of Cosp(C), which includes only invertible cospan maps
• the squares are isomorphism classes of commuting diagrams of the form:

(57) X

iX

��

ιX

// S

I

��

YιY

oo

iY

��

TX
JX

// M TY
JY

oo

X ′

i′Y

OO

ιX′

// S′

I′

OO

Y ′

iY ′

OO

ιY ′

oo

where two diagrams of the form (57) are isomorphic if they differ only in the middle
objects, say M and M ′, and their maps to the edges, and if there is an isomorphism
f : M→M ′ making the combined diagram commute.

The action of 2-morphisms α in Hor and Ver on squares is by composition in
diagrams of the form:

(58) S2

π1

~~||
||

||
|| π2

  B
BB

BB
BB

B

X S1
π1oo

π2 //

α

OO

Y

TX

p1

OO

p2

��

M

P1

OO

P2

��

Π1oo
Π2 // TY

p1

OO

p2

��

X ′ S′
π1oo

π2 // Y ′

(where the resulting square is as in 57, with S2 in place of S and α ◦P1 in place of
P1).

Composition (horizontal or vertical) of squares of cospans is, as in 2Cosp(C),
given by composition (by pushout) of the three spans of which the square is composed.
The composition operators for diagrams of cospan maps are by the usual ones in
Cosp(C).

Remark 2. Notice that Hor and Ver as defined are indeed bicategories: elimi-
nating all but the invertible 2-morphisms leaves a collection which is closed under
composition by pushouts.

We show more fully that this is a Verity double bicategory in Theorem 2, but for
now we note that the definition of horizontal and vertical composition of squares
is defined on equivalence classes. One must show that this is well defined. We will
get this result indirectly as a result of Lemmas 6 and 7, but it is instructive to see
directly how this works in Cosp(C).

Lemma 1. The composition of squares in Definition 6 is well-defined.
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Proof. Suppose we have two representatives of a square, bounded by horizontal
cospans (S, π1, π2) from X to Y and (S′, π1, π2) from X ′ to Y ′, and vertical cospans
(TX , p1, p2) from X to X ′ and (TY , p1, p2) from Y to Y ′. The middle objects M1

and M2 as in the diagram (57). If we also have a composable diagram—one which
coincides along an edge (morphism in Hor or Ver) with the first—then we need to
know that the pushouts are also isomorphic (that is, represent the same composite
square).

In the horizontal and vertical composition of these squares, the maps from the
middle object M of the new square to the middle objects of the new sides (given by
composition of cospans) arise from the universal property of the pushouts on the
sides being composed (and the induced maps from M to the corners, via the maps
in the cospans on the other sides). Since the middle objects are defined only up to
isomorphism class, so is the pushout: so the composition is well defined, since the
result is again a square of the form (57). �

We use this, together with Lemmas 6 and 7, (proved in Section A) to show the
following:

Theorem 2. If C is a category with finite colimits, then 2Cosp(C)0 is a Verity
double bicategory.

Proof. In the construction of 2Cosp(C)0, we take isomorphism classes of double
cospans as the squares. We also restrict to invertible cospan maps in the horizontal
and vertical bicategories.

That is, take 2-isomorphism classes of morphisms in Mor in the double bicat-
egory, where the 2-isomorphisms are invertible cospan maps, in both horizontal
and vertical directions. We are then effectively discarding all morphisms and 2-
morphisms in 2Mor, and the 2-morphisms in Mor except for the invertible ones.
In particular, there may be “squares” of the form (57) in 2Cosp(C) with non-
invertible maps joining their middle objects M , but we have ignored these, and
also ignore non-invertible cospan maps in the bicategories on the edges. Thus, we
consider no diagrams of the form (207) except for invertible ones, in which case the
middle objects (say, M and M ′) are representatives of the same isomorphism class.
Similar reasoning applies to the 2-morphisms in 2Mor.

The resulting structure we get from discarding these will again be a double
bicategory. In particular, the new Mor and 2Mor will be bicategories, since they
are, respectively, just a category and a set made into a discrete bicategory by
adding identity morphisms or 2-morphisms as needed. On the other hand, for
the composition, source and target maps to be weak 2-functors amounts to saying
that the structures built from the objects, morphisms, and 2-cells respectively are
again bicategories, since the composition, source, and target maps satisfy the usual
axioms. But the same argument applies to those built from the morphisms and
2-cells as within Mor and 2Mor. So we have a double bicategory.

Next we show that the horizontal and vertical action conditions (Definition 27 of
section A.3) hold in 2Cosp(C). A square in 2Cosp(C) is a diagram of the form (57),
and a 2-cell is a map of cospans. Given a square M1 and 2-cell α with compatible
source and targets as in the action conditions, we have a diagram of the form shown
in (58). Here, M1 is the square diagram at the bottom, whose top row is the cospan
containing S1. The 2-cell α is the cospan map including the arrow α : S1→S2.
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There is a unique square built using the same objects as M1 except using the cospan
containing S2 as the top row. The map to S2 from M is then α ◦ P1.

To satisfy the action condition, we want this square M2, which is the candidate
for M1 ⋆V α, to be unique. But suppose there were another M ′

2 with a map to S2.
Since we are in 2Cosp(C)0, α must be invertible, which would give a map from M ′

2

to S1. We then find that M ′
2 and M2 are representatives of the same isomorphism

class, so in fact this is the same square. That is, there is a unique morphism
in 2Mor taking M1 to M2 (a diagram of the form 208, oriented vertically) with
invertible cospan maps in the middle and bottom rows. This is the unique filler for
the pillow diagram required by definition 27.

The argument that 2Cosp(C)0 satisfies the action compatibility condition is
similar.

So 2Cosp(C)0 is a double bicategory in which, there there is at most one unique
morphism in Mor, and at most unique morphisms and 2-morphisms in 2Mor, for
any specified source and target, and the horizontal and vertical action conditions
hold. So 2Cosp(C)0 can be interpreted as a Verity double bicategory (Lemma
7). �

Remark 3. We observe here that the compatibility condition (50) relating the
associator in the horizontal and vertical bicategories to composition for squares can
be seen from the fact that the associators are maps which come from the universal
property of pushouts. This is by the parallel argument to that we gave for spans
in Section 3.3. The same argument applies to the middle objects of the squares,
and gives associator isomorphisms for that composition. Since these become the
identity when we reduce to isomorphism classes, we get a commuting pillow as in
(50). A similar argument shows the compatibility condition for the unitor, (51).

Note that the analogous theorem beginning with a category C with finite limits
and using spans is equivalent to this case, by taking Cop.

In Section 5.2 we use a similar argument to obtain a Verity double bicategory of
cobordisms with corners. First, however, we must see how these are defined. This
is the task of Chapter 5. In Appendix A.2 we show that Cosp(C) is a Verity double
bicategory. For now, we will examine how cobordisms form a special topological
example of this sort of Verity double bicategory.

5. Cobordisms With Corners

Our motivation here for studying Verity double bicategories is to provide the
right formal structure for our special example of higher categories of cobordisms.
The objects in these categories are manifolds of some dimension, say k. In this case,
the morphisms are (k+1)-dimensional cobordisms between these manifolds: that is,
manifolds with boundary, such that the boundary decomposes into two components,
with one component as the source, and one as the target. The 2-cells are equivalence
classes (k + 2)-dimensional cobordisms between (k + 1)-dimensional cobordisms:
these can be seen as manifolds with corners, where the corners are the k-dimensional
objects. Specifically, with these as with the cobordisms in our definition of nCob,
only the highest-dimensional level consists of isomorphism classes. This means that
composition of the horizontal and vertical cobordisms will need to be weak, which
is why we use Verity double bicategories as defined in Definition 5.
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Observe that we could continue building a ladder in which, at each level, the
j + 1-cells are cobordisms between the j-cells, which are cobordisms between the
(j − 1)-cells. The two levels we consider here are enough to give a Verity double
bicategory of n-dimensional cobordisms with corners, where we think of the top
dimension (k+ 2 in the above) as n. We will see that these can be construed using
the double cospan construction of Section 4.3.

5.1. Collars on Manifolds with Corners. Here we will use a modified form
of our construction from Section 4.3 of a Verity double bicategory 2Cosp(C) in
order to show an example of a Verity double bicategory of cobordisms with corners,
starting with C the category of smooth manifolds. To begin with, we recall that
a smooth manifold with corners is a topological manifold with boundary, together
with a certain kind of C∞ structure. In particular, we need a maximal compatible
set of coordinate charts φ : Ω→[0,∞)n (where φ1, φ2 are compatible if φ2 ◦ φ

−1
1

is a diffeomorphism). The fact that the maps are into the positive sector of Rn

distinguishes a manifold with corners from a manifold.
Jänich [48] introduces the notion of 〈n〉-manifold, reviewed by Laures [60]. This

is build on a manifold with faces:

Definition 7. A face of a manifold with corners is the closure of some con-
nected component of the set of points with just one zero component in any co-
ordinate chart. An 〈n〉-manifold is a manifold with faces together with an n-tuple
(∂0M, . . . , ∂n−1M) of faces of M , such that

• ∂0M ∪ . . . ∂n−1M = ∂M
• ∂iM ∩ ∂jM is a face of ∂iM and ∂jM

The case we will be interested in here is the case of 〈2〉-manifolds. In this nota-
tion, a 〈0〉-manifold is just a manifold without boundary, a 〈1〉-manifold is a mani-
fold with boundary, and a 〈2〉-manifold is a manifold with corners whose boundary
decomposes into two components (of codimension 1), whose intersections form the
corners (of codimension 2). We can think of ∂0M and ∂1M as the “horizontal” and
“vertical” part of the boundary of M .

Example 3. LetM be the solid 3-dimensional illustrated in Figure 12. The bound-
ary decomposes into 2-dimensional manifolds with boundary. Denote by ∂0M the
boundary component consisting of the top and bottom surfaces, and ∂1M be the
remaining boundary component (a topological annulus).

In this case, ∂0M is the disjoint union of the manifolds with corners S (two
annuli) and S′ (topologically a three punctured sphere); ∂1M is the disjoint union
of two components, TX (which is topologically a three-punctured sphere) and TY

(topologically a four-punctured torus).
Then we have ∂0M ∪∂1M = ∂M . Also, ∂0M ∩∂1M is a 1-dimensional manifold

without boundary, which is a face of both ∂0M and ∂1M (in fact, the shared
boundary). In particular, it is the disjoint union X ∪ Y ∪X ′ ∪ Y ′.

We have described a Verity double bicategory of double cospans in a category
with all pushouts. We could then form such a system of cobordisms with corners in
a category obtained by co-completing Man, so that all pushouts exist. The problem
with this is that the pushout of two cobordisms M1 and M2 over a submanifold

S included in both by maps S
i1→M1 and S

i2→M2 may not be a cobordism. If the
submanifolds are not on the boundaries, certainly the result may not even be a
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manifold: for instance, two line segments with a common point in the interior. So
to get a Verity double bicategory in which the morphisms are smooth manifolds
with boundary, certainly we can only consider the case where we compose two
cobordisms by a pushout along shared submanifolds S which are components of
the boundary of both M1 and M2.

However, even if the common submanifold is at the boundary, there is no guar-
antee that the result of the pushout will be a smooth manifold. In particular, for
a point x ∈ S, there will be a neighborhood U of x which restricts to U1 ⊂ M1

and U2 ⊂ M2 with smooth maps φi : Ui→[0,∞)n with φi(x) on the boundary of
[0,∞)n with exactly one coordinate equal to 0. One can easily combine these to give
a homeomorphism φ : U→Rn, but this will not necessarily be a diffeomorphism
along the boundary S.

To solve this problem, we use the collaring theorem: For any smooth manifold
with boundary M , ∂M has a collar : an embedding f : ∂M × [0,∞)→M , with
(x, 0) 7→ x for x ∈ ∂M . This is a well-known result (for a proof, see e.g. [47], sec.
4.6). It is an easy corollary of this usual form that we can choose to use the interval
[0, 1] in place of [0,∞) here.

Gerd Laures ([60], Lemma 2.1.6) describes a generalization of this theorem to
〈n〉-manifolds, so that for any 〈n〉-manifold M , there is an n-dimensional cubical
diagram (〈n〉-diagram) of embeddings of cornered neighborhoods of the faces. It is
then standard that one can compose two smooth cobordisms with corners, equipped
with such smooth collars, by gluing along S. The composite is then the topological
pushout of the two inclusions. Along the collars of S in M1 and M2, charts φi :
Ui→[0,∞)n are equivalent to charts intoRn−1×[0,∞), and since the the composite
has a smooth structure defined up to a diffeomorphism1 which is the identity along
S.

5.2. Cobordisms with Corners. Suppose we take the category Man whose ob-
jects are smooth manifolds with corners and whose morphisms are smooth maps.
Naively, would would like to use the cospan construction from Section 4.3, we ob-
tain a Verity double bicategory 2Cosp(Man). While this approach will work with
the category Top, however, it will not work with Man since this does not have all
colimits. In particular, given two smooth manifolds with boundary, we can glue
them along their boundaries in non-smooth ways, so to ensure that the pushout ex-
ists in Man we need to specify a smoothness condition. This requires using collars
on the boundaries and corners.

For each n, we define a Verity double bicategory within Man, which we will call
nCob2:

Definition 8. The Verity double bicategory nCob2 is given by the following data:

• The objects of nCob2 are of the form P = P̂ × I2 where P̂ may be any
(n− 2) manifolds without boundary and I = [0, 1].

1Note that the precise smooth structure on this cobordism depends on the collar which is
chosen, but that there is always such a choice, and the resulting composites are all equivalent up
to diffeomorphism. That is, they are equivalent up to a 2-morphism in the bicategory. So strictly
speaking, the composition map is not a functor but an anafunctor. It is common to disregard

this issue, since one can always define a functor from an anafunctor by using the axiom of choice.
This is somewhat unsatisfactory, since it does not generalize to the case where our categories are
over a base in which the axiom of choice does not hold, but this is not a problem in our example.
This issue is discussed further by Makkai [69].



EXTENDED TQFT’S AND QUANTUM GRAVITY 41

• The horizontal and vertical bicategories of nCob2 have
– objects: as above

– morphisms: cospans P1
i1→S

i2←P2 where S = Ŝ × I and Ŝ may be
any of those cospans of (n − 1)-dimensional manifolds-with-boundary

which are cobordisms with collars such that the P̂i × I are objects,
the maps are injections into S, a manifold with boundary, such that
i1(P1) ∪ i2(P2) = ∂S × I, i1(P1) ∩ i2(P2) = ∅,

– 2-morphisms: cospan maps which are diffeomorphisms of the form f×
id : T × [0, 1]→T ′ × [0, 1] where T and T ′ have a common boundary,
and f is a diffeomorphismT →T ′ compatible with the source and target
maps—i.e. fixing the collar.

where the source of a cobordism S consists of the collection of components
of ∂S × I for which the image of (x, 0) lies on the boundary for x ∈ ∂S,
and the target has the image of (x, 1) on the boundary
• squares: diffeomorphism classes of n-dimensional manifolds M with cor-

ners satisfying the properties of M in the diagram of equation (57), where
isomorphisms are diffeomorphisms preserving the boundary
• the action of the diffeomorphisms on the “squares” (classes of manifolds
M) is given by composition of diffeomorphisms of the boundary cobordisms
with the injection maps of the boundary M

The source and target objects of any cobordism are the collars, embedded in the
cobordism in such a way that the source object P = P̂ × I2 is embedded in the

cobordism S = Ŝ × I by a map which is the identity on I taking the first interval
in the object to the interval for a horizontal morphism, and the second to the inter-
val for a vertical morphism. The same condition distinguishing source and target
applies as above.

Composition of squares works as in 2Cosp(C)0.

We will see that nCob2 is a Verity double bicategory in Section 5.3, but for
now it suffices to note that since it is composed of double cospans, we can hope to
define composition to be just that in the Verity double bicategory2Cosp(C)0 where
C is the category of manifolds with corners. The proof that this is a Verity double
bicategory will entail showing that nCob2 is closed under this composition.

Lemma 2. Composing horizontal morphisms in nCob2 this way produces another
horizontal morphism in nCob2. Similarly, composition of vertical morphisms pro-
duces a vertical morphism, and composition of squares produces another square.

Proof. The horizontal and vertical morphisms are products of the interval I with
〈1〉-manifolds, whose boundary is ∂0S), equipped with collars. Suppose we are
given two such cobordisms S1 and S2, and an identification of the source of S2 with
the target of S1 (say this is P = P̂ ×I). Then the composite S2 ◦S1 is topologically
the pushout of S1 and S2 over P . Now, P is smoothly embedded in S1 and S2,
and any point in the pushout will be in the interior of either S1 or S2 since for any
point on P̂ each end of the interval I occurs as the boundary of only one of the two
cobordisms. So the result is smooth. Thus, 2Cob is closed under such composition
of morphisms.

The same argument holds for squares, since it holds for any representative of
the equivalence class of some manifold with corners, M , and the differentiable
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structure will be the same, since we consider equivalence up to diffeomorphisms
which preserve the collar exactly. �

This establishes that composition in nCob2 is well defined, and composites are
again cobordisms in nCob2. We show that it is a Verity double bicategory in
Section 5.3.

Example 4. We can represent a typical manifestation of the diagram (57) as in
Figure 12.

Figure 12. A Square in nCob2 (Thickened Lines Denote Collars)

Consider how this picture is related to (57). In the figure, we have n = 3, so
the objects are (compact, oriented) 1-dimensional manifolds, thickened by taking a
product with I2. X (top, solid lines) and Y (top, dotted lines) are both isomorphic
to (S1∪S1)× I2, while X ′ and Y ′ (bottom, solid and dotted respectively) are both
isomorphic to S1 × I2.

The horizontal morphisms are (thickened) cobordisms S, and S′, which are a pair
of thickened annuli and a two-holed disk, respectively, with the evident injection
maps from the objects X,Y,X ′, Y ′. The vertical morphisms are the thickened
cobordisms TX and TY . In this example, TX happens to be of the same form as S′

(a two-holed disk), and has inclusion maps from X and X ′, the two components
of its boundary, as the “source” and “target” maps. TY is homotopy equivalent
to a four-punctured torus, where the four punctures are the components of its
boundary: two circles in Y and two in Y ′, which again have the obvious inclusion
maps. Reading from top to bottom, we can describe TY as the story of two (thick)
circles which join into one circle, then split apart, then rejoin, and finally split apart
again.
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Finally, the “square” in this picture is the manifold with corners, M , whose
boundary has four components, S, S′, TX , andTY , and which has corners precisely
along the boundaries of these manifolds. These boundaries’ components are divided
between the objects X,Y,X ′, Y ′. The embeddings of these thickened manifolds and
cobordisms gives a specific way to equip M with collars.

Given any of the horizontal or vertical morphisms (thickened cobordisms S, S′,
TX and TY ), a 2-morphism would be a diffeomorphism to some other cobordism
equipped with maps from the same boundary components (objects), which fixes
the collar on that cobordism (the embedded object). Such a diffeomorphism is
necessarily a homeomorphism, so topologically the picture will be similar after the
action of such a 2-morphism, but we would consider two such cobordisms as separate
morphisms in Hor or Ver.

Remark 4. We note the resemblance between this example and Path(S)2 and
H(S) defined previously. In those cases, we are considering manifolds embedded in a
topological space S, and only a low-dimensional special case (the square [0, 1]×[0, 1]
is a manifold with corners). Instead of homotopies, which make sense only for
embedded spaces, nCob2 has diffeomorphisms. However, in both cases, we consider
the squares to be isomorphism classes of a certain kind of top-dimensional object
(homotopies or cobordisms). This eliminates the need to define morphisms or cells
in our category of dimension higher than 2. We may omit this restriction if we
move to the more general setting of a double bicategory, as described in Section A.

We conclude this section by illustrating composition in both directions in nCob2,
and in particular illustrating the interchange law (42) for cobordisms with corners.
Figure 13 shows four cobordisms with corners, arranged to show three examples of
horizontal composition and three of vertical composition. The vertical composites,
denoted by ⊗V , can be seen as “gluing” the vertically stacked cobordisms along the
boundary between them, which is the bottom face of the cobordisms on top, and
the top face of those on bottom. The horizontal composites, denoted by ⊗H , are
somewhat less obvious. In the figure, they can be seen as “gluing” the right-hand
cobordism along a common face. In each case, the common face is the “inside” face
of the left-hand cobordism, and the “outside” face of the right-hand one.

5.3. A Bicategory Of Cobordisms With Corners. Now we want to show that
cobordisms of cobordisms form a Verity double bicategory under the composition
operations we have described. We have shown in Theorem 2 that there is a Verity
double bicategory denoted 2Cosp(C)0 for any category C with finite colimits. We
want to show that the reduction from the full 2Cosp(C)0 to just the particular
cospans in nCob2 leaves this fact intact.

The argument that double cospans form a Verity double bicategory can be
slightly modified to show the same about cobordisms with corners, which are closely
related. We note that there are two differences. First, the category of manifolds
with corners does not have all finite colimits, or indeed all pushouts. Second, we
are not dealing with all double cospans of manifolds with corners, so nCob2 is not
2Cosp(C)0 for any C. In fact, the second difference is what allows us to deal with
the first.

Theorem 3. nCob2 is a Verity double bicategory.

Proof. First, recall that objects in nCob2 are manifolds with corners of the form

P = P̂ × I2 for some manifold P̂ , and notice that both horizontal and vertical
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Figure 13. Compositions in nCob2 Satisfy the Interchange Law

morphisms are cospans. In general, if we have two cospans in the category of
manifolds with corners sharing a common object, we cannot take a pushout and
get a manifold with corners. However, we are only considering a subcollection of all
possible cospans of smooth manifolds with corners, all all those we consider have
pushouts which are again smooth manifolds with corners (Lemma 2).

In particular, since composition of squares is as in 2Cosp(C)0, before taking
diffeomorphism classes of manifolds M in nCob2, we would again get a double
bicategory made from cobordisms with corners, together with the embeddings used
in its cospans, and collar-fixing diffeomorphisms. This is shown by arguments
identical to those used in the proof of Lemma 6.
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When we reduce to diffeomorphism classes of these manifolds, then just as in the
proof of nTheorem 2, we can cut down this double bicategory to a structure, and
the result will satisfy the horizontal and vertical action conditions, giving a Verity
double bicategory, since it satisfies the conditions of Lemma 7.

So in fact, by the same arguments as in these other cases, nCob2 is a Verity
double bicategory. �

By the argument of Section 4.2, this means that we can also think of nCob2 as
a bicategory, which we will do for the purposes of constructing an Extended TQFT
as a weak 2-functor. To do this, we next describe, in Chapter 6 some versions of a
bicategory of 2-vector spaces, and in particular 2-Hilbert spaces.

6. 2-Vector Spaces

6.1. Kapranov-Voevodsky 2-Vector Spaces. We want to find a way of de-
scribing an extended TQFT—one acting on manifolds with corners. We would like
to find something analogous to Atiyah’s characterization of a TQFT as a functor
between a category of cobordisms and a category of vector spaces. We have now
established that there is a bicategory nCob2 of in which we can interpret objects
as manifolds, morphisms as cobordisms, and 2-morphisms as cobordisms between
cobordisms (which are diffeomorphism classes of manifolds with corners). The next
constituent we need is a bicategory to take the place of the category of vector spaces.
There are several notions of a bicategory of “2-vector spaces” available, and each
gives rise to a notion of an extended TQFT as a 2-functor into this bicategory.

There are two major philosophies of how to categorify the concept “vector space”.
A Baez-Crans (BC) 2-vector space is a category object in Vect—that is, a category
having a vector space of objects and of morphisms, where source, target, compo-
sition, etc. are linear maps. This is a useful concept for some purposes—it was
developed to give a categorification of Lie algebras. The reader may refer to the
paper of Baez and Crans [6] for more details. However, a BC 2-vector space turns
out to be equivalent to a 2-term chain complex and, this is not the concept of
2-vector space which concerns us here.

The other, and prior, approach is to define a 2-vector space as a category having
operations such as a monoidal structure analogous to the addition on a vector space.
In particular, We will restrict our attention to complex 2-vector spaces, though the
generalization to an arbitrary base field K is straghtforward.

This ambiguity about the correct notion of “2-vector space” is typical of the
problem of categorificiation. Since the categorified setting has more layers of struc-
ture, there is a choice of level to which the structure in the concept of a vector
space should be lifted. Thus in the BC 2-vector spaces, we have literal vector ad-
dition and scalar multiplication within the objects and morphisms. In KV 2-vector
spaces and their cousins, we only have this for morphisms, and for objects there is
a categorified analog of these operations, as wel shall see.

Indeed, there are different sensible generalizations of vector space even within
this second philosophy, however. Josep Elgueta [34] shows several different types of
“generalized” 2-vector spaces, and relationships among them. In particular, while
KV 2-vector spaces can be thought of as having a set of basis elements, a generalized
2-vector space may have a general category of basis elements. The free generalized
2-vector space on a category is denoted Vect[C]. Then KV 2-vector spaces arise
when C is a discrete category with only identity morphisms. This is essentially a
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set S of objects. Thus it should not be surprising that KV 2-vector spaces have a
structure analogous to free vector spaces generated by some finite set - which are
isomorphic to Ck.

All such concepts of 2-vector space are C-linear additive categories with some
properties, so we begin by explaining this. To begin with, we have additivity for
categories, the equivalent of linear structure in a vector space. This is related
to biproducts, which are both categorical products and coproducts, in compatible
ways. The motivating example for us is the direct sum operation in Vect. Such an
operation plays the role in a 2-vector space which vector addition plays in a vector
space. To be precise:

Definition 9. A biproduct for a category C is an operation giving, for any objects
x and y in V an object x⊕y equipped with morphisms ιx, ιy from x and y respectively
into x⊕y; and morphisms πx, πy from x⊕y into x and y respectively, which satisfy
the biproduct relations:

(59) πx ◦ ιx = idx and πy ◦ ιy = idy

and similarly for y, and

(60) ιx ◦ πx + ιy ◦ πy = idx⊕y

Whenever biproducts exist, they are always both products and coproducts.

Definition 10. A C-linear additive category is a category V with biproduct
⊕, and such that that for any x, y ∈ V, hom(x, y) is a vector space over C, and
composition is a bilinear map. A C-linear functor between C-linear categories is
one where morphism maps are C-linear.

The standard example of this approach is the Kapranov-Voevodsky (KV) defi-
nition of a 2-vector space [51], which is the form we shall use (at least when the
situation is finite-dimensional). To motivate the KV definition, consider the idea
that, in categorifying, one should replace the base field C with a monoidal category.
Specifically, it turns out, with Vect, the category of finite dimensional complex
vector spaces. This leads to the following replacements for concepts in elementary
linear algebra:

• Vectors = k-tuples of scalars 7→ 2-vectors = k-tuples of vector spaces
• Addition 7→ Direct Sum
• Multiplication 7→ Tensor Product

So just as Ck is the standard example of a complex vector space, Vectk will be
the standard example of a 2-vector space. However, the axiomatic definition allows
for other possibilities:

Definition 11. A Kapranov–Voevodsky 2-vector space is a C-linear additive
category in which every object can be written as a finite biproduct of simple objects
(i.e. objects x where hom(x, x) ∼= C). A 2-linear map between 2-vector spaces is
a C-linear functor which preserves biproducts.

Remark 5. It is a standard fact that preserving biproducts and preserving exact
sequences are equivalent in this setting: in a KV 2-vector space, every object is
equivalent to a direct sum of simple objects, so every exact sequence splits. The
above definition of a 2-linear map is sometimes given in the equivalent form requir-
ing that the functor preserve exact sequences. Indeed, since every object is a finite
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biproduct of simple objects, a 2-vector space is an abelian category. For more on
these, see Freyd [42].

Now, it is worth mentioning that Yetter shows [88] (in his Proposition 13), that
the original definition of Kapranov and Voevodsky gives an equivalent result to a
definition of a 2-vector space V as a finitely semi-simple Vect-module. A Vect-
module V is finitely semi-simple if there is a finite set S ⊂ Ob(V) of simple objects,
such that every objects of V is a finite product of objects in S. The advantage of
this definition is simply that it is a straightforward categorification of the usual
definition of a vector space as a C-module.

The reader is referred to Yetter’s paper (Definition 2) for a precise version of the
definition of a Vect-module, but remark that to be a Vect-module requires that
V has an “action” of Vect on it. That is, there is a functor

(61) ⊙ : Vect×V→V

which satisfies the usual module axioms only up to two isomorphisms, similar to
the associator and unitor, which satisfy some further coherence conditions. We will
see the meaning this action when we consider a standard example, where this is
literally a tensor product.

Example 5. The standard example [51] of a KV 2-vector space highlights the

analogy with the familar vector space Ck. The 2-vector space Vectk is a category
whose objects are k-tuples of vector spaces, maps are k-tuples of linear maps. The
additive structure of the 2-vector space Vectk comes from applying the direct sum
in Vect componentwise.

Note that there is an equivalent of scalar multiplication, using the tensor product:

(62) V ⊗







V1

...
Vk






=







V ⊗ V1

...
V ⊗ Vk







and

(63)







V1

...
Vk






⊕







W1

...
Wk






=







V1 ⊕W1

...
Vk ⊕Wk







As the correspondence with linear algebra would suggest, 2-linear maps T :
Vectk→Vectl amount to k × l matrices of vector spaces, acting by matrix multi-
plication using the direct sum and tensor product instead of operations in C:

(64)







T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k













V1

...
Vk






=







⊕k
i=1 T1,i ⊗ Vi

...
⊕k

i=1 Tl,i ⊗ Vi







The natural transformations between these are matrices of linear transforma-
tions:

(65) α =







α1,1 . . . α1,k

...
...

αl,1 . . . αl,k






:







T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k






−→







T ′
1,1 . . . T ′

1,k
...

...
T ′

l,1 . . . T ′
l,k







where each αi,j : Ti,j→T ′
i,j is a linear map in the usual sense.
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These natural transformations give 2-morphisms between 2-linear maps, so that
Vectk is a bicategory with these as 2-cells:

(66) Vectk

F
&&

G

88Vectlα

��

In our example above, the finite set of simple objects of which every object is a
sum is the set of 2-vectors of the form

(67)

















0
...C
...
0

















which have the zero vector space in all components except one (which can be arbi-
trary). These are like categorified “standard basis vectors”, so we call them standard

basis 2-vectors . Clearly every object of Vectk is a finite biproduct of these objects,
and each is simple (its vector space of endomorphisms is 1-dimensional).

The most immediately useful fact about KV 2-vector spaces is the following well
known characterization:

Theorem 4. Every KV 2-vector space is equivalent as a category to Vectk for
some k ∈ N.

Proof. Suppose K is a KV 2-vector space with a basis of simple objects X1 . . . Xk.
Then we construct an equivalence E : K→Vectk as follows:
E should be an additive functor with E(Xi) = Vi, where Vi is the k-tuple of

vector spaces having the zero vector space in every position except the ith, which
has a copy of C. But any object X , is a sum

⊕

iX
ni

i , so by linearity (i.e. the
fact that E preserves biproducts) X will be sent to the sum of the same number of
copies of the Vi, which is just a k-tuple of vector spaces whose ith component is Cni .
So every object in K is sent to an k-tuple of vector spaces. By C-linearity, and the
fact that hom-vector spaces of simple objects are one-dimensional, this determines
the images of all morphisms.

But then the weak inverse of E is easy to construct, since sending Vi to Xi gives
an inverse at the level of objects, by the same linearity argument as above. At the
level of morphisms, the same argument holds again. �

This is a higher analog of the fact that every finite dimensional complex vector
space is isomorphic to Ck for some k ∈ N. So, indeed, the characterization of 2-
vector spaces in our example above is generic: every KV 2-vector space is equivalent
to one of the form given. Moreover, our picture of 2-linear maps is also generic, as
shown by this argument, analogous to the linear algebra argument for representation
of linear maps by matrices:

Lemma 3. Any 2-linear map T : Vectn→Vectm is naturally isomorphic to a
map of the form (64).
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Proof. Any 2-linear map T is a C-linear additive functor between 2-vector spaces.
Since any object in a 2-vector space can be represented as a biproduct of simple
objects—and morphisms likewise—such a functor is completely determined by its
effect on the basis of simple objects and morphisms between them.

But then note that since the automorphism group of a simple object is by defini-
tion just all (complex) multiples of the identity morphism, there is no choice about
where to send any such morphism. So a functor is complely determined by the
images of the basis objects, namely the 2-vectors Vi = (0, . . . ,C, . . . , 0) ∈ Vectn,
where Vi has only the ith entry non-zero.

On the other hand, for any i, T (Vi) is a direct sum of some simple objects in
Vectm, which is just some 2-vector, namely a k-tuple of vector spaces. Then the
fact that the functor is additive means that it has exactly the form given. �

And finally, the analogous fact holds for natural transformations between 2-linear
maps:

Lemma 4. Any natural transformation α : T →T ′ from a 2-linear map T :
Vectn→Vectm to a 2-linear map T ′ : Vectn→Vectm, both in the form (64)
is of the form (65).

Proof. By Lemma 3, the 2-linear maps T and T ′ can be represented as matrices of
vector spaces, which act on an object in Vectn as in (64). A natural transformation
α between these should assign, to every object X ∈ Vectn, a morphism αX :
T (X)→T ′(X) in Vectm, such that the usual naturality square commutes for every
morphism f : X→Y in Vectn.

Suppose X is the n-tuple (X1, . . . , Xn), where the Xi are finite dimensional
vector spaces. Then

(68) T (X) = (⊕n
k=1V1,k ⊗Xk, . . . ,⊕

n
k=1Vm,k ⊗Xk)

where the Vi,j are the components of T , and similarly

(69) T ′(X) = (⊕n
k=1V

′
1,k ⊗Xk, . . . ,⊕

n
k=1V

′
m,k ⊗Xk)

where the V ′
i,j are the components of T ′.

Then a morphism αX : T (X)→T ′(X) consists of an m-tuple of linear maps:

(70) αj : ⊕n
k=1Vj,k ⊗Xk→⊕

n
k=1V

′
j,k ⊗Xk

but by the universal property of the biproduct, this is the same as having an
(n×m)-indexed set of maps

(71) αjk : Vj,k ⊗Xk→⊕
n
r=1V

′
j,r ⊗Xr

and by the dual universal property, this is the same as having (n×n×m)-indexed
maps

(72) αjkr : Vj,k ⊗Xk→V ′
j,r ⊗Xr

However, we must have the naturality condition for every morphism f : X→X ′:

(73) T (X)

αX

��

T (f)
// T (X ′)

αX′

��

T ′(X)
T ′(f)

// T ′(X ′)
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Note that each of the arrows in this diagram is a morphism in Vectm, which are
linear maps in each component—so in fact we have a separate naturality square for
each component.

Also, since T and T ′ act on X and X ′ by tensoring with fixed vector spaces as
in (68), one has T (f)i = ⊕ifi ⊗ 1Vij

, having no effect on the Vij . We want to show
that the components of α affect only the Vij .

Additivity of all the functors involved implies that the assignment α of maps to
objects in Vectn is additive. So consider the case when X is one of the standard
basis 2-vectors, having C in one position (say, the kth), and the zero vector space in
every other position. Then, restricting to the naturality square in the kth position,
the above condition amounts to having m maps (indexed by j):

(74) αj,k : Vj,k→V ′
j,k

So by linearity, a natural transformation is determined by an n×m matrix of maps
as in (65). �

The fact that 2-linear maps between 2-vector spaces are functors between cat-
egories recalls the analogy between linear algebra and category theory in the con-
cept of an adjoint. If V and W are inner product spaces, the adjoint of a linear
map F : V →V is a map F † for which 〈Fx, y〉 =

〈

x, F †y
〉

for all x ∈ V1 and
y ∈ V2. A (right) adjoint of a functor F : C→D is a functor G : D→C for which
homD(Fx, y) ∼= homC(x,Gy) (and then F is a left adjoint of G).

In the situation of a KV 2-vector space, the categorified analog of the adjoint of
a linear map is indeed an adjoint functor. (Note that since a KV 2-vector space has
a specified basis of simple objects, it makes sense to compare it to an inner product
space.) Moreover, the adjoint of a functor has a matrix representation which is
much like the matrix representation of the adjoint of a linear map. We summarize
this as follows:

Theorem 5. Given any 2-linear map F : V →W , there is a 2-linear map G :
W→V which is both a left and right adjoint to F , and G is unique up to natural
isomorphism.

Proof. By Theorem 4, we have V ≃ Vectn and W ≃ Vectm for some n and m.
By composition with these equivalences, we can restrict to this case. But then we
have by Lemma 3 that F is naturally isomorphic to some 2-linear map given by
matrix multiplication by some matrix of vector spaces [Fi,j ]:

(75)







F1,1 . . . F1,n

...
...

Fm,1 . . . Fm,n







We claim that a (two-sided) adjoint functor F † is given by the “dual transpose
matrix” of vector spaces [Fi,j ]

†:

(76)







F †
1,1 . . . F †

1,m
...

...

F †
n,1 . . . F †

n,m







where F †
i,j is the vector space dual (Fj,i)

∗ (note the transposition of the matrix).
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We note that this prescription is symmetric, since [T ]†† = [T ], so if G is always
left adjoint of F , then F is also a left-adjoint of G, hence G a right adjoint of F . So
if this prescription gives a left adjoint, it gives a two-sided adjoint. Next we check
that it does.

Suppose x = (Xi) ∈ Vectn is the 2-vector with vector space Xi in the ith

component, and y = (Yj) ∈ Vectm has vector space Yj in the jth component.
Then Fx ∈ Vectm has jth component ⊕n

k=1Vk,j ⊗Xk. Now, a map in Vectm from
Fx to y consists of a linear map in each component, so it is an m-tuple of maps:

(77) fj : ⊕n
k=1Vk,j ⊗Xk→Yj

for j = 1 . . .m. But since the direct sum (biproduct) is a categorical product, this
is the same as an m× n matrix of maps:

(78) fkj : Vk,j ⊗Xk→Yj

for k = 1 . . . n and j = 1 . . .m, and hom(Fx, y) is the vector space of all such maps.
By the same argument, a map in Vectn from x to Gy consists of an n×mmatrix

of maps:

(79) gjk :: Xk→V ∗
j,k ⊗ Yj

∼= hom(Vj,k, Yj)

for k = 1 . . . n and j = 1 . . .m, and hom(x,Gy) is the vector space of all such maps.
But then we have a natural isomorphism hom(Fx, y) ∼= hom(x,Gy) by the dual-

ity of hom and ⊗, so in fact G is a right adjoint for F , and by the above argument,
also a left adjoint.

Moreover, no other nonisomorphic matrix defines a 2-linear map with these prop-
erties, and since any functor is naturally isomorphic to some matrix, this is the sole
G which works. �

We conclude this section by giving an example of a 2-vector space which we
shall return to again later. It is motivated by the attempt to generalize the FHK
construction of a TQFT from a group, as described in Section 2.3. During the
construction of the vector space assigned to a circle, one makes use of the group al-
gebra of a finite groupG—the set of complex linear combinations of group elements.
There is a categorified analog:

Example 6. As an example of a KV 2-vector space, consider the group 2-algebra
on a finite group G, defined by analogy with the group algebra:

The group algebra C[G] consists of the set of elements formed as formal linear
combinations elements of G:

(80) b =
∑

g∈G

bg · g

where all but finitely many bg are zero. We can think of these as complex functions
on G. The algebra multiplication on C[G] is given by the multiplication in G:

(81) b ⋆ b′ =
∑

g,g′∈G

(bgb
′
g′) · gg′

This does not correspond to the multiplication of functions onG, but to convolution:

(82) (b ⋆ b′)g =
∑

h·h′=g

bhb
′
h′
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Similarly, the group 2-algebra A = Vect[G] is the category of G-graded vector
spaces. That is, direct sums of vector spaces associated to elements of G:

(83) V =
⊕

g∈G

Vg

where Vg ∈ Vect is a vector space. This is a G-graded vector space. We can take
direct sums of these pointwise, so that (V ⊕V ′)g = Vg⊕V ′

g), and there is a “scalar”
product with elements of Vect given by (W ⊗V )g = W ⊗Vg. There is also a group
2-algebra product of G-graded vector spaces, involving a convolution on G:

(84) (V ⋆ V ′)h =
⊕

g·g′=h

Vg ⊗ V
′
g′

The category of G-graded vector spaces is clearly a KV 2-vector space, since it
is equivalent to Vectk where k = |G|. However, it has the additional structure of
a 2-algebra because of the group operation on the finite set G.

The analogy between group algebras and group 2-algebras highlights one moti-
vation for thinking of 2-vector spaces. This is the fact that, in quantum mechanics,
one often “quantizes” a classical system by taking the Hilbert space of C-valued
functions on its phase space. Similarly, one approach to finding a higher-categorical
version of a quantum field theory is to take Vect-valued functions. We have noted
in Section 2.3 that, given a finite group, the Fukuma-Hosono-Kawai construction
gives 2D TQFT, whose Hilbert space of states on a circle is just C[G]. For this
reason, we expect that Example 6 should be relevant to categorifying this theory.
However, it is not quite sufficient, as we discuss in Section 6.2.

6.2. KV 2-Vector Spaces and Finite Groupoids. The group 2-algebra of Ex-
ample 6 shows that we can get a 2-vector space as a category of functions from some
finite set S into Vect, and this may have extra structure if S does. However, this
is somewhat unnatural, since Vect is a category and S a mere set. It seems more
natural to consider functor categories into Vect from some category C. These are
the generalized 2-vector spaces described by Elgueta [34]. Then the above way of
looking at a KV 2-vector space can be reduced to the situation when C is a discrete
category with a finite set of elements.

However, there are interesting cases where C is not of this form, and the result
is still a KV vector space. A relevant class of examples, as we shall show, come
from special kinds of groupoids.

Definition 12. An essentially finite groupoid is one which is equivalent to a
finite groupoid. A finitely generated groupoid is one with a finite set of objects,
and all of whose morphisms are generated under composition by a finite set of
morphisms. An essentially finitely generated groupoid is one which is equivalent
to a finitely generated one.

We first show that finite groupoids are among the special categories C we want
to consider:

Lemma 5. If X is an essentially finite groupoid, the functor category [X,Vect] is
a KV 2-vector space.

Proof. To begin with, we note that Vect is trivially a KV 2-vector space. In
particular, it is a C-linear additive category, which we use to give [X,Vect] the
same structure.
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Define a biproduct ⊕ on [X,Vect] as follows. Given two functors F1, F2 :
X→Vect, define for both objects and morphisms,

(85) (F1 ⊕ F2)(x) = F1(x) ⊕ F2(x)

where we are using both the direct sum of vector spaces, and the fact that linear
maps between vector spaces inherit a direct sum. The projections and injections
are defined pointwise. Since the biproduct axioms (59) and (60) hold pointwise,
this is indeed a biproduct.

Now X is equivalent to a skeleton of itself, X, which contains a single object
in each isomorphism class. Since X is essentially finite, this is also a finite set of
objects, and each object has a finite set of endomorphisms. Since these are all
invertible, X is in fact equivalent to a finite coproduct of finite groups, thought of
as single-object categories.

But then a functor F : X→Vect is just a direct sum of functors from these
groups. A functor from a group G (as a one-object category) to Vect is just a
finite dimensional representation of G. Now, Schur’s Lemma states that the only
intertwining operators from an irreducible representation to itself are multiples of
the identity. That is, it ensures that all such representations are simple objects.
On the other hand, every representation is a finite direct sum of irreducible ones.

So in particular, the finite dimensional representations of a finite group form a
KV 2-vector space. A direct sum of such categories is again a KV 2-vector space,
and so [X,Vect] is one.

But [X,Vect] is equivalent to this, so it is a KV 2-vector space. �

We notice that we are speaking here of groupoids, and any groupoid X is equiv-
alent to its opposite category Xop, by an equivalence that leaves objects intact
and replaces each morphism by its inverse. So there is no real difference between
[X,Vect], the category of Vect-valued functors from X, and [Xop,Vect], the cate-
gory of Vect-valued presheaves (henceforth simply “Vect-presheaves”) on X, where
we emphasize that unlike ordinary presheaves, these are functors into Vect, rather
than Set. So we have shown that Vect-presheaves on a groupoid X form a KV
2-vector space. We will work with these examples from now on.

Since many results about presheaves are well known, we will find it convenient
to use this terminology for objects of [X,Vect] for the sake of compatibility, and
to highlight the connection to these results. We will ignore the distinction in the
sequel, but remind readers here that our uses of the term “presheaf” are valid only
because we are working with groupoids. The importance of Set-valued presheaves
to topos theory, and the richness of existing results for these, is one reason to keep
this relationship in mind.

Now we want to show a result analogous to a standard result for presheaves (see,
e.g. MacLane and Moerdijk [67], Theorem 1.9.2). This is that functors between
underlying groupoids induce 2-linear maps between the 2-vector spaces of Vect-
presheaves on them.

Theorem 6. If X and Y are essentially finite groupoids, a functor f : X→Y
gives two 2-linear maps between KV 2-vector spaces:

(86) f∗ : [Y,Vect]→[X,Vect]

called “pullback along f” and

(87) f∗ : [X,Vect]→[Y,Vect]
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called “pushforward along f”. Furthermore, f∗ is the (two-sided) adjoint to f∗.

Proof. First we define, for any functor F : Y→Vect,

(88) f∗(F ) = F ◦ f

which is a functor from X to Vect. This is just the pullback of F along f .
To show that this is a 2-linear map (that is, a biproduct-preserving, C-linear

functor), we first note that it is trivially C-linear since a linear combination of
maps in some hom-category in [Y,Vect] is taken by f∗ to the corresponding linear
combination in the hom-category in [X,Vect], where maps are now between vector
spaces thought of over x ∈ X.

To check that the functor f∗ : [Y,Vect]→[X,Vect] preserves biproducts, note
that for any x ∈ X we have that f∗(F1 ⊕ F2)(x) = (F1 ⊕ F2)(f(x)) = F1(f(x)) ⊕
F2(f(x)) = (f∗F1 ⊕ f∗F2)(x).

So indeed there is a 2-linear map f∗. But then by Theorem 5, there is a two-sided
adjoint of f∗, denoted f∗. �

Remark 6. The argument in this proof for the existence of the adjoint to f∗ uses
Theorem 5. While no such theorem exists for Set-valued presheaves, there is a
corresponding theorem defining a “pushforward” of presheaves of sets. In fact, the
only major difference between what we have shown for Vect-presheaves and the
standard results for Set-presheaves is that the left and right adjoint are the same.
This means that the “pushforward” map is an ambidextrous adjunction for the
pullback (for much more on the relation between ambidextrous adjunctions and
TQFTs, see Lauda [57]).

It seems useful, then, to have another approach to the “pushforward” map than
the matrix-dependent view of Theorem 5. Fortunately, there is a more instrinsic
way to describe the 2-linear map f∗, the adjoint of f∗, and we know this must be
the same as the one given in matrix form.

Definition 13. For a given y ∈ Y, define the diagram Dy whose objects are objects
x ∈ X equipped with maps f(x)→ y in Y, and whose morphisms are morphisms
a : x→x′ whose images make the triangles

(89) f(x)

��

f(a)
// f(x′)

{{ww
wwww

www

y

in Y commute. Given a Vect-presheaf G on X, define f∗(G)(y) = colimG(Dy)—a
colimit in Vect.

The pushforward of a morphism b : y→ y′ in Y, f∗(G)(b) : f∗(G)(y)→ f∗(G)(y′)
is left to the reader.

This definition of the pushforward involved the diagram D, which is the comma
category of objects x ∈ X equipped with maps from f(x) to y. This is the appro-
priate categorical equivalent of a preimage—rather than requiring f(x) = y, one
accepts that they may be isomorphic, in different ways. So this is a categorified
equivalent of taking a sum over a preimage. It needs to be confirmed directly that
it really is the adjoint.

Theorem 7. This f∗ is a 2-linear map, and a two-sided adjoint for f∗.
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Proof. The given f∗ certainly defines a Vect-presheaf f∗G on Y, and the operation
of taking colimits is functorial and preserves biproducts, so f∗ is a 2-linear map.

Consider the effect of f∗ on a 2-vector G : X→Vect by describing f∗G :
Y→Vect. If F : Y→Vect is as above, there should be a canonical isomor-
phism between [G, f∗(F )] (a hom-set in [X,Vect]) and [p∗(G), F ] (a hom-set in
[Y,Vect]).

The hom-set [G, f∗(F )] is found by first taking the pullback of F along f . This
gives a presheaf on X, namely F (f(−)). The hom-set is then the set of natural
transformations α : G→ f∗F . Each such α, given an object x in X, picks a linear
map αx : F (f(x))→G(x) (subject to the naturality condition).

For an object y in Y, pulling back F onto X gives the vector space F (y) at each
object x with f(x) = y. This is the presheaf f∗F . So an element of [f∗F,G] is an
assignment, to every x ∈ X, a linear map f∗F = F (y)→G(x).

To get the equivalence required for adjointness, given a linear map h : f∗G(y)→F (y),
one should get a collection of maps hx : G(x)→F (y) for each object x in D
(which commute with all arrows in D). But f∗(G)(x) was defined to be a col-
imit, hence there is a unique compatible map ix from each G(x) into it, so take
hx = h ◦ ix : G(x)→F (y). This gives a map from [p∗(G), F ] to [G, f∗(F )]. To
see that this is an equivalence, note that the colimit is a universal object with the
specified maps. So given the collection of hx, one gets the map h from the universal
property.

So f∗ is a left adjoint to f∗. By Theorem 5, it is therefore also a right-adjoint. �

Remark 7. For future reference, we will describe the pair of adjoint functors, f∗

and f∗ in even more detail, since this is used in the construction of our extended
TQFT in Chapter 7. Since we will want to make use of the simplifying fact that any
groupoid is equivalent to a skeletal groupoid, it is particularly helpful to consider
this case.

A skeletal groupoid has exactly one object in each isomorphism class, so it is
equivalent to a disjoint union of one-object groupoids - which can be interpreted as
groups. Since X and Y are essentially finite, these are finite groups. So a Vect-
presheaf on X is a functors which assigns a vector space Vx to each object x ∈ X,
and a linear map V →V for each morphism (i.e. group element). This is just a
representation of the finite group Aut(x) on Vectx.

If X and Y are skeletal, then f : X→Y on objects is just a set map, taking
objects in X to objects in Y. For morphisms, f gives, for each object x ∈ X, a
homomorphism from the group hom(x, x) to the group hom(f(x), f(x)).

So the pullback f∗ is fairly straightforward: given F : Y→Vect, the pullback
f∗F = F ◦ f : X→Vect assigns to each x ∈ X the vector space F (f(x)), and
gives a representation of Aut(x) on this vector space where g : x→x acts by f(g).
This is the pullback representation. In the special case where f gives an inclusion
of groups, this is usually called the “restricted representation”.

The adjoint process to the restriction of representations is generally called finding
the induced representation (see, e.g. Burrows [20] for a classical discussion of this
when f is an inclusion). We will use the same term for the general case when f is
just a homomorphism, and slightly generalize the usual description.

The pushforward f∗, recall, assigns each object the vector spaces which is the
colimit of its essential preimage. For any presheaf V , this is determined by the
colimit for each component of that essential preimage. In particular, in the simple
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case where X and Y are discrete (i.e. have only identity isomorphisms, so they
can be thought of as sets, and the essential preimage is just the usual preimage for
sets), for each y ∈ Y,

(90) f∗F (y) ∈ Y =
⊕

g:f(x)→ y

F (x)

So we just get the biproduct of all vector spaces over the preimage.
In any component, which can be seen as a group H , the colimit is again a

direct sum over the components of the essential preimage, but each component of
the essential preimage amounts to the induced representiation of F (x) under the
homomorphism given by f . So the colimit is a direct sum of such representations.

To see what this does, consider the case where X and Y are just single groups,
so we have a group homomorphism f : G→H , and we have a representation of
G on V . Now such a representation is the same as a representation of the group
algebra C[G] on V - i.e. it makes V into a C[G]-module. Furthermore, f induces
an algebra homomorphism f : C[G]→C[H ].

To get a C[H ]-module from V (i.e. in order to produce a representation of
H , the pushforward of V ), we first allow C[H ] to act freely on V . Then, to be
the pushforward - that is, the colimit of the diagram Dy described above - we
must take the quotient under the relation that all morphisms coming from G act
on V by letting f(g) have the same action as g. Taking the quotient, we get
f∗V = C[H ]⊗C[G] V .

Then for general groupoids, we have a direct sum of such components:

(91) f∗F (y) ∈ Y =
⊕

g:f(x)→ y

C[Hy]⊗C[Gx] V

where Hy = Aut(y) and Gx = Aut(x).

Remark 8. To describe an adjunctions, we should describe its unit and counit.
To begin with, we give a description of the “pull-push”:

(92) f∗ ◦ f
∗ : [Y,Vect]→[Y,Vect]

The unit

(93) η : 1[Y,Vect] =⇒ f∗ ◦ f
∗

is a natural transformation which, for each V ∈ [Y,Vect] gives a morphism. This
is itself a natural transformation between functors:

(94) ∆y : V (y)→ f∗ ◦ f
∗V (y)

This takes V (y) into the colimit described above by a diagonal map. If there
is no special symmetry (the discrete case) and the colimit is just the direct sum
V ⊕· · ·⊕V , this map is obvious. If not, there is a canonical map into the colimit (a
quotient space) which factors through the direct sum with the diagonal map. This
is because the map from V (y) to the pullback on any bject in its essential preimage
in X is evidently the identity, and then one uses the injection into the colimit.

Now consider the other, “push-pull” side of the (two-sided) adjunction, f∗ ◦ f∗.
Here, we first push a presheaf V ′ from X to Y, then pull back up to X, has a
similar effect on the vector spaces.

Here we start with a presheaf V ′ on X. The ”push-pull” along f just takes every
vector space on an object and replaces it by a colimit over the diagram consisting
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of all objects with the same image in Y, and morphisms agreeing with these maps:
colimDf(x). This is because this is the result of pushing V ′ along f at f(x), which
is then pulled back to x.

Then the unit

(95) η : 1[X,Vect] =⇒ f∗ ◦ f∗

is a natural transformation giving, for any presheaf V ′, a morphism (i.e. natural
transformation of functors):

(96) ιx : V ′(x)→ colimDf(x)

This is just the canonical map into the colimit.

Now, in Section 6.3 we discuss a generalization of 2-vector spaces based on
the fields of measurable Hilbert spaces discussed by Crane and Yetter [28]. This
generalization has much in common with KV 2-vector spaces, but corresponds to
infinite dimensional Hilbert spaces in the way that they correspond to the finite
dimensional case.

6.3. 2-Hilbert Spaces. The KV 2-vector spaces we have discussed so far are a
categorified analog of finite dimensional vector spaces. However, there are situations
in which this is insufficient, and analogs of infinite dimensional vector spaces are
needed. Moreover, and perhaps more important, we have not yet discussed the
equivalent of an inner product on 2-vector spaces.

In fact, both of these issues are closely related to applications to quantum me-
chanics. A standard way to describe a quantum mechanical system, starting with
the corresponding classical system, involves L2 spaces, which in general will be
infinite dimensional, and possess an inner product. The relationship is that the
Hilbert space of states of the quantum system is L2(X), where X is the phase
space of a classical system. A possible motivation for trying to find a higher analog
for Hilbert spaces is to reproduce this framework for quantizing a classical theory
in the categorified setting.

The form of an inner product on a KV 2-vector space is not difficult to infer from
the intuition that categorification corresponds to replacing sums and products in
vector spaces by ⊕ and ⊗ in 2-vector spaces, together with the fact that a KV
2-vector space has a specified basis. However, we will put off describing it until we
have discussed infinite dimensional 2-vector spaces, since we can put the expression
in a more general form.

One approach to infinite-dimensional 2-vector spaces is developed by Crane and
Yetter [28], who develop a 2-category called Meas. This is a 2-category of cate-
gories, functors, and natural transformations, but in particular, the objects are all
of the form Meas(X) for some measurable space X . This object can be interpreted
as infinite-dimensional 2-vector spaces associated to X , analagous to the Hilbert
space L2(X). A simplified form of the definition is as follows:

Definition 14. Suppose (X,M) is a measurable space, so that X is a set and M
is a sigma-algebra of measurable subsets of X. Then Meas(X) is a category with:

• Objects: measurable fields of Hilbert spaces on (X,M): i.e. X-indexed
families of Hilbert spaces Hx such that the preimage of any H ∈ Hilb is
measurable.
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• Morphisms: measurable fields of bounded linear maps between Hilbert spaces.
That is, an X-indexed family

fx : Hx→Kx

so that ||f ||, the operator norm of f , is measurable. The field f is bounded
if ||fx|| is bounded.

Remark 9. The original definition given by Crane and Yetter is somewhat differ-
ent, in the way it specifies how to identify when a function selecting vx ∈ Hx∀x ∈ X
is measurable. This somewhat simplified definition should suffice for our later dis-
cussion, since we return to these ideas only briefly in Chapter 8.

The construction of fields of Hilbert spaces is due to Jacques Dixmier [31], al-
though he described them, not as categories, but merely as Hilbert spaces with a
particular decomposition in terms of the measurable space X . As with L2 spaces,
to get what we will call a 2-Hilbert space, we need to have a standard measure on
X . This is used to define a direct integral of Hilbert spaces:

(97) H =

∫ ⊕

X

Hxdµ(x)

As a vector space, this is the direct sum of all Hx. The measure enters when we
define its inner product:

(98) 〈φ|ψ〉 =

∫

X

〈φx|ψx〉dµ(x)

We will use this notation to define 2-linear maps of 2-Hilbert spaces.
The 2-vector space Meas(X) is the category of all measurable fields of Hilbert

spaces on X . Then we have the 2-category of all such categories:

Definition 15. The 2-category Meas is the collection of all categories Meas(X),
with functors between them, and natural transformations between functors.

Crane and Yetter describe how functors between such categories arise from:

• a measurable field of Hilbert spaces K(x,y) on X × Y
• a Y -family µy of measures on X

Given these things, there is a functor ΦK,µy
: Meas(X)→Meas(Y) any field Hx

on X :

(99) ΦK,µy
(H)y =

∫ ⊕

X

Hx ⊗K(x,y)dµy(x)

This is a generalization of the 2-linear maps between Kapranov-Voevodsky 2-
vector spaces: summing over an index set in matrix multiplication is a special case
of integrating over X , when X is a finite set with counting measure (and all the
vector spaces Cn which appear as components in a 2-vector or 2-linear map are
equipped with the standard inner product). Indeed, these functors generalize the
matrices (64). Yetter conjectures that all functors between categories like Meas(X)
are of this form.

The 2-maps are ways to get from one functor to another. In this case, given
ΦK,µy

and ΦK′,νy
, if there is such a 2-map, it will be given by:

• A measurable field of bounded linear operators

(100) α(x,y) : K(x,y)→K
′
(x,y)
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• A Y -indexed family
{(

dν
dµ

)

y

}

s.t.y ∈ Y , the Radon-Nikodym derivatives of

νy w.r.t. µy (or, equivalently, )

Once again, the KV 2-vector space situation is a special case as above.
Now, just as integration is used to define the inner product on L2(X), the direct

integral gives a categorified equivalent of an inner product of fields of Hilbert spaces:

(101) 〈H|H′〉 =

∫ ⊕

X

H∗
x ⊗H

′
xdµ(x)

So in particular, the inner product is given by linearity, and the fact that, for φi ∈ H
and φ′i ∈ H

′:

(102) 〈φ∗1 ⊗ φ
′
1|φ

∗
2 ⊗ φ

′
2〉 =

∫

X

〈φ∗1|φ
∗
2〉 · 〈φ

′
1|φ

′
2〉dµ(x)

where φ∗ is the dual of φ, namely 〈φ|−〉.
We will mostly consider the finite-dimensional (Kapranov-Voevodsky) 2-vector

spaces, which remain better understood than these infinite dimensional 2-Hilbert
spaces in the style of Crane and Yetter. However, we return to these ideas to justify
some of the physical motivation for this paper in Chapter 8.

7. Extended TQFTs as 2-Functors

We began in our preliminary section by discussing Atiyah’s description of an
n-dimensional TQFT as a functor

(103) Z : nCob→Hilb

The development since that point has been aimed at setting up what we need to give
a parallel description of an extended TQFT in terms of 2-functors. This concept
extends the definition of a TQFT to more general manifolds with corners, and is
due to Ruth Lawrence.

One of the values of TQFT’s has been as a method for finding invariants of
manifolds, and in particular, for 3-manifolds (potentially with boundary). This is
closely connected to the subject of knot theory, since knots are studied by their
complement in some 3-manifold. One way to think of the invariants which appear
this way is as ways of cutting up the manifold into pieces, assigning algebraic data
to the pieces, and then recombining it. The possibility of recombining the pieces
unambiguously to form the invariant for the whole manifold is precisely what we
want to express as some form of functoriality.

By now we have considered two examples of the process of categorification. The
first involved passing from nCob, a category of manifolds and cobordisms between
them, to nCob2, a (double) bicategory in which we allowed cobordisms between
cobordisms. The second case was the passage from Vect, the category of vector
spaces and linear maps, to 2Vect with 2-vector spaces, 2-linear maps, and natural
transformations.

In the first case we saw that in both nCob and nCob2, each level of structure
involves entities of one higher dimension than the previous level. So in nCob2, the
objects (manifolds) have codimension one higher in the total spaces represented by
the (isomorphism class of) cobordisms, than is the case in nCob. One sometimes
says that categorification allows us to “go up a dimension”, or rather codimen-
sion. This theme appears in what is probably the prototypical example of higher
categories (and indeed categories of any kind), namely homotopy theory. where
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we consider homotopies between spaces, homotopies between homotopies, and so
forth.

We want to use this to develop the following definition:

Definition 16. An extended TQFT is a weak 2-functor

(104) Z : nCob2→2Hilb

So in particular, such a Z assigns:

• To an (n−2)-manifold, a 2-Hilbert space (i.e. a C-linear additive category)
• To an (n− 1)-manifold, a 2-linear map between 2-Hilbert spaces (an exactC-linear functor)
• To an n-manifold, a 2-natural transformation between 2-linear maps

Where all this data satisfies the conditions for a weak 2-functor (e.g. it preserves
composition and units up to coherent isomorphism, and so forth). To take this
as a definition seems reasonable enough, but we then need to show how particular
examples of extended TQFT’s satisfy this definition.

7.1. ZG on Manifolds: The Dijkgraaf-Witten Model. Here we want to con-
sider explicit construction of some extended TQFT’s based on a finite group G.
We saw in Section 2.3 that the Fukuma-Hosono-Kawai construction gave a way to
define a regular 2D TQFT for any finite group. In that case, space of states for a
circle which is just the centre of the group algebra C[G]. In particular, this means
that the space of states has a basis consisting of elements of the group G. Each
state therefore consists of some linear combination of group elements. Extending
this to higher dimensions is somewhat nonobvious, but turns out to be related to
the Dijkgraaf-Witten (DW) model [30]. This can also be described as a topological
gauge theory.

The DW model describes a flat connection on a manifold B (we use B rather
than M here for consistency with our previous notation). Being flat, the nontrivial
information about a connection is that which depends only on the topology of B.
In particular, all the information available about the connection comes in the form
of holonomies of the connection around loops. The holonomy is an element of the
gauge group G, which is the “symmetry group” of some field. The element assigned
to a loop gives the element of G by which the field would be transformed if it is
“parallel transported” around that loop. We then define:

Definition 17. A flat G-bundle on a connected, pointed manifold B is a homo-
morphism

(105) A : π1B→G

We denote the set of all such functions as A0(B).

This definition is different from the usual concept of a “G-bundle” equipped with
a flat connection in terms of fibre bundles, but the two concepts are equivalent, as
established by Thurston [83].

Generally, a flat G-bundle on B takes loops in B into elements G. For any loop γ
in B, it assigns an element A(γ) ∈ G. This is the holonomy around the loop γ. The
G-connection is flat if the holonomy assigned to a loop is invariant under homotopy.
In particular, any contractible loop must have trivial holonomy. On the other hand,
nontrivial elements of the fundamental group of M may correspond to nontrivial
elements of G. These are thought of as describing the “parallel transport” of some
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object, on which G acts as a symmetry group, around the loop. The usual picture
in gauge theory has this object being the fibre of some bundle, such as a vector
space, so that G is a Lie group such as SO(3). However, the same picture applies
when G is finite.

However, instead of the set of flat bundles here, we want to categorify this usual
picture, to extend TQFT’s to give a functor into 2Vect. So there must be a category
to take the place of A0, which has morphisms as well as objects. Fortunately, the
structure of gauge theory which we have not captured in the definition of A0 does
precisely this.

The principle here is that the fundamental group is too restrictive, and we should
instead use the fundamental groupoid of B, and describe connections as functors.

Definition 18. The fundamental groupoid Π1(B) of a space B is a groupoid
with points of B as its objects, and whose morphisms from x to y are just all
homotopy classes paths in B starting at x and ending at y.

The operation of taking Π1 of a space can be thought of as a form of categorifying:
instead of spaces considered as sets of points (with some topology), we now think
of them as categories, whose set of objects is just the original space. In fact, these
categories are groupoids, since we consider paths only up to homotopy, so every
morphism is invertible. Moreover, a loop can be thought of as an automorphism of
the chosen base point in B, so the fundamental group π1(B) is just the group of
automorphisms of a single object in Π1(B).

Then, following the principle that a connection gives a group element in G for
each such loop, we can generalize this to the whole of Π1(B):

Definition 19. A flat connection is a functor

(106) A : Π1(B)→G

where G is thought of as a one-object groupoid (hence every b ∈ B is sent to the
unique object). A gauge transformation α : A→A′ from one connection to
another is a natural transformation of functors: it assigns to each point x ∈ B a
group element in such a way that for each path γ : x→ y the naturality square

(107) ⋆
A(γ)

//

α(x)

��

⋆

α(y)

��
⋆

A′(γ)

// ⋆

commutes.

Remark 10. Using the notation that [C1, C2] is the category whose objects are
functors from C1 to C2 and whose morphisms are natural transformations, then
we can say that flat connections and natural transformations form the objects and
morphisms of the category

(108) [Π1(B), G]

Physicaly, a gauge transformation can be thought of as a change, at each point
in B, of the way of measuring the internal degrees of freedom of the object which is
transformed by G. In gauge theory, two connections which are related by a gauge
transformation are usually considered to describe physically indistinguishable states
- the differences they detect are due only to the system of measurement used.
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We stop here to note that this definition is somewhat different from the usual
notion of a smooth connection on a bundle—indeed, we have not used any concept
of smoothness. To make all these connections into smooth connections on a definite
bundle would be impossible. What we have described would have to be a sum over
all possible bundles. However, for discrete G, we can ignore this issue.

So then the “configuration space” for an (n− 2)-dimensional manifold B in our
extended TQFT will be a category whose objects are flat G-connections on B and
whose morphisms (all invertible) are gauge transformations between connections.

Remark 11. If γ : x→x in Π1(B) is a loop, and A and A′ are two connections
related by a gauge transformation α, we have A′(γ) = α(x)−1A(γ)α(x) - that is,
the holonomies assigned by the two connections around the loop are conjugate. So
physically distinct holonomies correspond to conjugacy classes in G.

In particular, in the case of 1-dimensional manifolds, if B is just a circle, then the
space of states of the field in the DW model has a basis consisting just of elements
in the centre of G. (We remark here that this is the same as the TQFT for the
FHK construction, which we have obtained now in a different way.)

But indeed, any category, and in particular the groupoid Π1(B), is equivalent
to its skeleton. If B is connected, all points are related by paths, so Π1(B) ∼=
π1(B): the fundamental group, as a single-object category, is equivalent to the
path category. However, the gauge transformations for connections measured from
a fixed base point are determined by a single group element at the base point, which
acts on holonomies around any loop by conjugation.

The groupoid [Π1(B), G], the configuration space for our theory, is the “moduli
stack” of connections weakly modulo gauge transformations. This is a categorified
equivalent of the usual physical configuration space, which consists of the set of
equivalence classes of flat connetions modulo gauge transformations. Instead of
imposing equations between connections related by gauge transformations, however,
we simply add isomorphisms connecting these objects. This is the “weak quotient”
of the space of connections by the action of a group.

Finally, using this, we can define a 2-vector space associated to any manifold:

Definition 20. For any compact manifold B, and finite group G, define ZG(B) to
be the functor category

[

[Π1(B), G],Vect
]

.

as we verify in the following theorem.

Theorem 8. For any compact manifold B, and finite group G, the functor category
ZG(B) =

[

[Π1(B), G],Vect
]

is a Kapranov-Voevodsky 2-vector space.

Proof. First, note that for any space B,

(109) Π1(B) ≡
n

∐

i=1

(π1(Bi))

where the sum is taken over all path components of B. That is, objects in Π1(B)
are by definition isomorphic if and only if they are in the same path component.
But this groupoid is equivalent to a skeletal version which has just one object
for each isomorphism class—that is, one object for each path component. The
automorphisms for the object corresponding to path component Bi are then just
the equivalence classes of paths from any chosen point to itself—namely, π1(Bi).
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Moreover, if B is a compact manifold, so is each component Bi, which is also
connected. But the fundamental group for a compact, connected manifold is finitely
generated. So in particular, each π1(Bi) is finitely generated, and there are a finite
number of components. So Π1(B) is an essentially finitely generated groupoid.

But if Π1(B) is essentially finitely generated, then since G is a finite group,
[Π1(B), G] is an essentially finite groupoid. This is because each functor’s object
map is determined by the images of the generators, and there are finitely many
such assignments. Similarly, Π1(B) is equivalent to a skeleton of itself, and a
natural transformation in this case is just given by a group element in G for each
component of B, so there are finitely many of these. By Lemma 5 this means that
[

[Π1(B), G],Vect
]

is a KV 2-vector space. �

So we have a KV 2-vector space for each manifold, which is defined as Vect-
valued functors, on the groupoid [Π1(B), G]. As remarked earlier, we will describe
these as Vect-presheaves, since [Π1(B), G] is isomorphic to [Π1(B), G]op.

Example 7. Consider the circle S1.
The 2-vector space assigned to the cricle by our TQFT ZG is the Hilbert space

of of flat connections modulo gauge transformations, on the circle:

(110)
[

[Π1(S
1), G],Vect

]

Now, [Π1(S
1), G] looks like the group G equipped with the adjoint action on itself,

in the following sense. The fundamental group of the circle is Z, and Π1(S
1) is thus

equivalent to Z as a one-object category. Then taking maps into G, we note that
each functor takes the unique object of Z to the unique object of G, and thus is
determined entirely by the image of 1 ∈ Z. This will be some morphism g ∈ G (i.e.
an element of the group G), so we simply denote the corresponding functor by g.

A natural transformation between two functors g and g′ assigns to the single
object in Z a morphism h ∈ G—that is, it is again a group element. This must
satisfy the naturality condition that g′h = hg, or simply g′ = hgh−1. So there is a
natural transformation between functors for each conjugacy relation of this kind.

So [Π1(S
1), G] is equivalent to a groupoid whose objects correspond to elements

of the group G, and whose morphisms are conjugacy relations between elements
(which are clearly all invertible). This is also known as G weakly modulo G, or
G//G. Another equivalent category is the skeleton of this, whose set of objects is
the set of conjugacy classes of G. Each such object has a group of automorphisms
Stab(g), the stabilizer of any element in it.

Finally, the 2-vector space corresponding to the circle is the category of functors
from G//G into Vect. This gives a vector space for each object (element of G). It
also assigns an isomorphism in Vect for each isomorphism in G//G: the functors
must be equivariant under conjugation by any h ∈ G. So the adjoint action of G
on itself is already built into this 2-vector space, and an object of Z(Vect[G]) is
functor F : G→Vect, which comes equipped with natural isomorphisms

(111) Rg : F → gFg−1

such that

(112) RgRh = Rgh

Where gFg−1 is a functor whose image vector space at a point h under F becomes
the image of the point ghg−1.
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So we have G-equivariant functors as the objects of the 2-vector space, and all
G-equivariant natural transformations between them as the morphisms.

As a 2-vector space, this category of G-equivariant functors can be described in
terms of its irreducible objects—since every other functor is isomorphic to a direct
sum of these. Any equivariant functor will have the same value on every element
of each conjugacy class in G, but an irreducible one will only assign nonzero to
elements of ONE conjugacy class.

Moreover, since the action ofG by conjugation gives linear isomorphisms between
the vector spaces over elements of [Π1(S

1), G], and since [Π1(S
1), G] is equivalent

to its skeleton, we can think of this functor as specifying as a conjugacy classes,
and single vector space V assigned to it, together with a linear representation of G
on V .

So the objects of ZS1 can be seen as consisting of pairs: a conjugacy class in G,
and a representation of G.

This example of the circle returns to a previous remark about Example 6, the
“group 2-algebra” Vect[G], the generalization of the group algebra C[G]. As seen
in Section 2.3, a TQFT based on the finite group G assigns Z(C[G]) to the circle.
So one expects a categorified version to assign something like the centre of Vect[G]
to a circle. What was not obvious in Example 6 was exactly what this is.

Irreducible elements of Z(C[G]) are indeed specified by conjugacy classes of G,
but as we see here, a difference appears because we think of functions on G not
precisely as a group, but as a groupoid of connections. Since the objects are the
elements of G, and the morphisms are conjugations (as distinct from the view of a
group as a one-object category), we get something new. The new ingredient is the
representation of G. We return to this fact for infinite G in Chapter 8.

Example 8. Consider the torus T 2 = S1 × S1. We want to find

(113) ZG(T 2) =
[

[Π1(T
2), G],Vect

]

This will be equivalent to the category we get if we replace the fundamental groupoid
Π1(T

2) by the equivalent skeletal groupoid. This is just the fundamental group of
T 2, which is isomorphic to Z2. So we simplify here by using this version.

The category [Π1(T
2), G] has, as objects, functors from Π1(T

2) to G (both seen
as a categories with one object), and morphisms which consist of natural transfor-
mations. A functor F ∈ [Z2, G] is then equivalent to a group homomorphism fromZ2 to G. Since Z2 is the free abelian group on the two generators (1, 0) and (0, 1),
the functor F is determined by the images of these two generators. The only re-
striction on F is that since Z2 is abelian, the images g1 = F (1, 0) and g2 = F (0, 1)
must commute.

So the objects of [Π1(T
2), G] are indexed by commuting pairs of elements (g1, g2) ∈

G2.
A natural transformation g : F →F ′ assigns to the single object ⋆ of Z2 a

morphism in G—that is, a group element h. This must satisfy the naturality
condition that this commutes for every a ∈ Z2:

(114) ⋆

h

��

F (a)
// ⋆

h

��
⋆

F ′(a)

// ⋆
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Equivalently, since h is invertible, we can write this in the form hF (a)h−1 = F ′(a)
for all a. This will be true for all a in Z2 as long as it is true for (1, 0) and (0, 1).

In other words, functors F and F ′ represented by (g1, g2) ∈ G2 and (g′1, g
′
2) ∈ G

2,
the natural transformations α : F→F ′ correspond to group elements h ∈ G which
act in both components at once, so (h−1g1h, h

−1g2h) = (g′1, g
′
2).

So we have that the groupoid [Π1(T
2), G] is equivalent to A//G, where A =

{(g1, g2) ∈ G2 : g1g2 = g2g1}, and the action of G on A comes from the action on
G2 as above.

So the 2-vector space ZG(T 2) is just the category of Vect-presheaves on A, equi-
variant under the given action of G. This assigns a vector space to each connection
(g1, g2) on T 2, and an isomorphism of these vector spaces for each gauge transfor-
mation h : (g1, g2) 7→ (h−1g1h, h

−1g2h). Equivalently (taking a skeleton of this),
we could say it gives a vector space for each equivalence class [(g1, g2)] ∈ G

2 under
simultaneous conjugation, and a representation of G on this vector space.

Both of these examples conform to a general pattern, which should be clear by
now:

Theorem 9. The KV 2-vector space ZG(B) for any connected manifold B is equiv-
alent to Vectn, where n is

(115)
∑

[A]∈A/G

|{irreps ofAut(A)}|

where the sum is over equivalence classes of connections on B, and Aut(A) ⊂ G is
the subgroup of G which leaves A fixed.

Proof. The groupoid [Π1(B), G] is equivalent to its skeleton S. This has as objects
the gauge equivalence classes of connections on B, and on each object, a group of
morphisms isomorphic to the group of gauge transformations fixing a representative
(i.e. the automorphism group of any object in the original [Π1(B), G]). Now we
want to consider [S,Vect], which is equivalent to

[

[Π1(B), G],Vect
]

. We know
[S,Vect] is a KV vector space, hence equivalent to some Vectn, where n is the
number of nonisomorphic simple objects. So consider what these are.

A functor F : S→Vect assigns a vector space to each equivalence class of con-
nections (i.e. each object), but also a representation of the group of automorphisms
of that object. This is Aut(A). Note that two functors giving inequivalent repre-
sentations cannot have a natural isomorphism between them. On the other hand,
any representation of Aut(A) is a direct sum of irreducible representations. So a
simple objects in

[

[Π1(B), G],Vect
]

amount to a choice of [A], and an irreducible
representation of Aut(A). The theorem follows immediately. �

The next thing to consider is how ZG will act on cobordisms.

7.2. ZG on Cobordisms: 2-Linear Maps. We have described a construction
which builds an extended TQFT from a finite group G. This takes a manifold
M—possibly with boundary or corners—and produces a 2-vector space of states
on it. This involved a 2-step construction: first one finds [Π1(M), G], the moduli
stack of flat connections; then one takes

[

[Π1(M), G],Vect
]

, which is the 2-vector
space having [Π1(M), G] as basis.

This begins to describe the extended TQFT Z : nCob2→2Vect that we are
interested in. However, Z is to be a 2-functor, and so far we have only described
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what it does to objects of Top. This tells us its effect on objects in nCob2, and
goes some way to describing its effect on morphisms, but recall that a morphism in
nCob2 can be seen as a cospan in Top. A cobordism (“space”) from a boundary
B to a boundary B′ is the cospan given by inclusion maps:

(116) S

B

ι

??�������
B′

ι′
``@@@@@@@@

Our construction amounts to a sequence of functorial operations, which there-
fore give a corresponding sequence of spans (or cospans) in three different catgories.
Next we will consider each of these steps in turn, remarking on the co- or contravari-
ance of the operation at each step.

The first step is the operation of taking the fundamental groupoid. This is
somewhat more elaborate than the fundamental group of a (pointed) space, but it
is closely related. Since any inclusion of spaces gives an inclusion of points, and
also of paths, we again have a cospan:

(117) Π1(S)

Π1(B)

ι

::uuuuuuuuu
Π1(B

′)

ι′
ddIIIIIIIII

(Where we are abusing notation somewhat by using the same notation for the
inclusion maps of spaces and path groupoids.)

In the next step, we apply a contravariant functor, [−, G]. Recall that we are
thinking of the group G as the category with one object ⋆ and the elements of G
as morphisms. Taking functors into G is contravariant, since if we have a functor
F : X→Y , then any from Y into G becomes a map from X into G by pullback
along F (i.e. ψ 7→ ψ ◦F = F ∗ψ). That is, we get a functor F ∗ : [Y,G]→[X,G]. So
at this stage of the construction we have a span:

(118) [Π1(S), G]

π
xxppppppppppp

π′

''NNNNNNNNNNN

[Π1(B), G] [Π1(B
′), G]

For convenience here we have made the convention that the pullback maps along
the inclusions are denoted ι∗ = π and ι′∗ = π′.

Finally, to this span, we apply another functor, namely [−,Vect]. This is con-
travariant for the same reason as [−, G], and thus we again have a cospan:

(119)
[

[Π1(S), G],Vect
]

[

[Π1(B), G],Vect
]

π∗

55kkkkkkkkkkkkkk
[

[Π1(B
′), G],Vect

]

π′∗

iiSSSSSSSSSSSSSS

We now recall that the pullbacks π∗ and π′∗ have adjoints: this is a direct
consequence of Theorem 6. This reveals how to transport a Vect-presheaf on
[Π1(B), G] along this cospan. In fact, it gives two 2-linear maps, which are adjoint.
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Having written the cobordism as a morphism from B to B′, we find a corresponding
2-linear map, though we observe that the adjoint is equally well defined. We first
do a pullback along π, giving a Vect-presheaf on S. Then we use the adjoint map
π′
∗. So we have the following:

Definition 21. For any cobordism S : B→B′ between compact manifolds, and
finite group G, define ZG(S) to be the 2-linear map:

(120) (π′)∗ ◦ π
∗ : ZG(B) −→ ZG(B′)

Here we have used the notation of Definition 20. Note that again by Theorem 6,
both of these functors are 2-linear maps, so the composite π′

∗ ◦ π
∗ is also a 2-linear

map. It remains to show that ZG preserves horizontal composition of functors
weakly—that is, up to a natural isomorphism.

Remark 12. We can think of the pullback-pushforward construction as giving—in
the language of quantum field theory—a “sum over histories” for evolving a 2-vector
built from the space of connections. Each 2-vector in

[

[Π1(B), G],Vect
]

picks out
a vector space for each G-connection on B. The 2-linear map we have described
tells us how to evolve this 2-vector along a cobordism (i.e. a change of spatial
topology). First we consider the pullback to

[

[Π1(S), G],Vect
]

, which gives us a
2-vector consisting of all assignments of vector spaces to connections on S which
restrict to the chosen one on B. Each of these could be considered a “history”
of the 2-vector along the cobordism. We then “push forward” this assignment to
B′, which involves a colimit. This is more general than a sum, though so one
could describe this as a “colimit of histories”. It takes into account the symmetries
between individual “histories” (i.e. connections on the cobordism, which are related
by gauge transformations).

It still needs to be seen that this operation is compatible with composition of
cobordisms. Now, a composite of two cobordisms is a special case of a composite of
cospans. This is a composition in a bicategory cobordisms—either the horizontal
or vertical bicategory in the Verity double bicategory defined in Chapter 5. It is
given by a pushout as described in Definition 4:

(121) S′ ◦ S

S

iS

<<yyyyyyyyy
S′

iS′

bbFFFFFFFF

B1

i1

>>~~~~~~~~
B2

i2

bbEEEEEEEEE i′
1

<<yyyyyyyy
B3

i′
2

``AAAAAAAA

When we take the groupoid of connections, however, the corresponding diagram
of spans between groupoids of connections weakly mod gauge transformations con-
tains a weak pullback square. This is since the objects are now groupoids, it makes
sense to speak of two connections being gauge equivalent, whereas the manifolds in
cobordisms are sets, where elements can only be equal or unequal. So for connec-
tions on S and S′, it is possible for the restrictions to the same set B2 to be iso-
morphic, rather than merely equal. Thus, we should consider this larger groupoid,
the weak pullback, whose objects come with a specified isomorphism between the
two restrictions:
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(122)

[Π1(S
′ ◦ S), G]

PS

wwnnnnnnnnnnnn
pS′

''PPPPPPPPPPPP
p1◦PS

��

p′

2
◦PS′

��

[Π1(S), G]

p1

wwppppppppppp

p2

''PPPPPPPPPPPP
α
∼

+3 [Π1(S
′), G]

p′

1wwnnnnnnnnnnnn

p′

2 ''OOOOOOOOOOO

[Π1(B1), G] [Π1(B2), G] [Π1(B3), G]

That this is a weak pullback square of functors between groupoids means that
this diagram commutes up to the natural isomorphism α : p2 ◦ PS −→ p′1 ◦ PS′ .
In the case of groupoids, a weak pullback can be seen as an example of a comma
category (the concept, though not the name, introduced by Lawvere in his doctoral
thesis [62]). We briefly discuss this next before stating the theorem regarding
composition.

Remark 13. In general, suppose we have a diagram of categories A
F
→C

G
←B.

Then an object in the comma category (F ↓ G) consists of a triple (a, f, b), where
a ∈ A and b ∈ B are objects, and f : F (a)→G(b) is a morphism in C. A morphism
in (F ↓ G) consists of a pair of morphisms (h, k) ∈ A×B making the square

(123) F (a1)
f1

//

F (h)

��

G(b2)

G(k)

��

F (a2)
f2

// G(b2)

commute. Note that in a weak pullback, the morphisms f would be required to
be an isomorphism, but when we are talking about a weak pullback of groupoids,
these conditions are the same.

The comma category has projection functors which complete the (weak) pullback
square for the two projections:

(124) (F ↓ G)

PA

{{ww
ww

ww
ww

w
PB

##G
GG

GG
GG

GG

A

F
$$H

HH
HH

HH
HH

H
α
∼

+3 B

G
{{vv

vv
vv

vv
vv

C

such that (F ↓ G) is a universal object (in Cat) with maps into A and B making
the resulting square commute up to a natural isomorphism α. This satisfies the
universal condition that, given any other category D with maps to A and B, there’s
an equivalence between [D,C] and the comma category (P ∗

A, P
∗
B) (where PS∗ and

PT ∗ are the functors from D to B which factor through PS and PT respectivery).
This equivalence arises in a natural way. This is the weak form of the universal
property of a pullback.
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So suppose we restrict to the case of a weak pullback of groupoids. This is
equivalent to the situation where A, B and C are skeletal - that is, each is just
a disjoint union of groups. Then the set of objects of (F ↓ G) is a disjoint union
over all the morphisms of C (which are all of the form g : x→ x for some object
x) of all the pairs of objects a ∈ A and b ∈ B with g : F (a)→G(b). In particular,
since we assume C is skeletal, this means F (a) = G(b), though there will be an
instance of this pair in (F ↓ G) for each g in the group of morphisms on this object
F (a) = G(b).

So as the set of objects in (F ↓ G) we have a disjoint union of products of sets—
for each c ∈ C, we get | hom(c, c)| copies of F−1(c)×G−1(c). The set of morphisms
is just the collection of commuting squares as in (123) above.

Note that if we choose a particular c and g : c→ c, and choose objects a, b with
F (a) = c, G(b) = c, and if H = Aut(a), K = Aut(b) and M = Aut(c), then the
group of automorphisms of (a, g, b) ∈ (F ↓ G) is isomorphic to the fibre product
H ×M K. In particular, it is a subgroup of the product group H × K consisting
of only those pairs (h, k) with F (h)g = gG(k), or just F (h) = gG(k)g−1. We can
call it H ×M K, keeping in mind that this fibre product depends on g. Clearly,
the group of automorphisms of two isomorphic objects in (F ↓ G) are isomorphic
groups.

In our example, the connections on S and S′ need only restrict to gauge-equivalent
connections on B2—since two such connections can be “pasted” together using a
gauge transformation. Moreover, we note that since all categories involved in our
example are groupoids, we have the extra feature that every morphism mentioned
must be invertible. This is what makes this a weak pullback rather than a lax
pullback, where α is only a natural transformation.

We are interested in the weak pullback square in the middle of (122), since the two
2-linear maps being compared differ only by arrows in this square. The square as
given is a weak pullback, with the natural isomorphism α “horizontally” across the
square. When considering a corresponding square of categories of Vect-presheaves,
the arrows are reversed. So, including the adjoints of p∗2 and p∗S′ , namely (p2)∗ and
(pS′)∗, we have the square:

(125)
[

[Π1(S
′ ◦ S), G],Vect

]

(pS′ )∗

))TTTTTTTTTTTTTTT

[

[Π1(S), G],Vect
]

(pS)∗
55jjjjjjjjjjjjjjj

(p2)∗

))TTTTTTTTTTTTTTT
[

[Π1(S
′), G],Vect

]

(pS′ )∗

iiTTTTTTTTTTTTTTT

[

[Π1(B2), G],Vect
]

(p′

1
)∗

55jjjjjjjjjjjjjjj(p2)∗

iiTTTTTTTTTTTTTTT

Note that there are two squares here—one by taking only the “pull” morphisms
(−)∗ from the indicated adjunctions, and the other by taking only the “push”
morphisms (−)∗. The first is just the square of pullbacks along morphisms from
the weak pullback square of connection groupoids. Comparing these is the core of
the following theorem, which gives one of the necessary properties for ZG to be a
weak 2-functor.
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Theorem 10. The process ZG weakly preserves composition. In particular, there
is a natural isomorphism

(126) βS′,S : ZG(S′ ◦ S)→ZG(S′) ◦ ZG(S)

Proof. The process ZG acts by on S′ ◦ S by taking the spans of groupoids in 122,
and giving 2-linear maps:

(127) (p′2 ◦ PS′)∗ ◦ (p1 ◦ PS)∗

On the other hand, ZG(S′) ◦ ZG(S) is found in the same diagram to be

(128) (p′2)∗ ◦ (p′1)
∗ ◦ (p2)∗ ◦ (p1)

∗

So we want to show there is a natural isomorphism:

(129) βS′,S : (p′2 ◦ PS′)∗ ◦ (p1 ◦ PS)∗→(p′2)∗ ◦ (p′1)
∗ ◦ (p2)∗ ◦ (p1)

∗

It suffices to show that there is an isomorphism between the upper and lower halves
of the square in the middle:

(130) γ : (PS′ )∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗

since then βS′,S is obtained by tensoring with identities.
Now, as we saw when discussing comma squares, the objects of the weak pull-

back [Π1(S
′ ◦ S), G] consist of pairs of connections, A ∈ [Π1(S), G], and A′ ∈

[Π1(S
′), G], together with a morphism in B2, g : p2(A)→ p′1(A

′). The morphisms
from (A1, g1, A

′
1) to (A2, g2, A

′
2) in the weak pullback are pairs of morphisms,

(h, k) ∈ [Π1(S), G]× [Π1(S
′), G], making the square

(131) p2(A1)
g1 //

p2(h)

��

p′1(A
′
2)

p′

1
(k)

��

p2(A2) g2

// p′1(A
′
2)

commute.
We may assume that the groupoids we begin with are skeletal—so the objects

consist of gauge equivalence classes of connections. Then recall from Remark 13
that in this weak pullback the set of objects in [Π1(S

′ ◦ S), G] is a disjoint union of
products of sets - for each c ∈ [Π1(B2), G], we get | hom(c, c)| copies of p2

−1(c) ×

p′
−1
1 (c).
So first taking a Vect-presheaf F on [Π1(S), G], we get that (PS)∗F is a Vect-

presheaf on [Π1(S
′ ◦ S), G]. Now over any fixed object (connection) A, we have a

set of objects in [Π1(S
′ ◦ S), G] which restrict to it: there is one for each choice

(g,A′) which is compatible with A in the sense that (A, g,A′) is an object in the
weak pullback - that is, g : p2(A)→ p′1(A

′). Each object of this form is assigned
the vector space F (A) by (PS)∗F .

Further, there are isomorphisms between such objects, namely pairs (h, k) as
above. There are thus no isomorphisms except between objects (A, g1, A

′) and
(A, g2, A

′) for some fixed A and A′. For any such fixed A and A′, objects corre-
sponding to g1 and g2 are isomorphic if

(132) g2p2(h) = p′1(k)g1

. Denote the isomorphism class of any g by [g].
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Then if GA is the group of automorphisms of any gauge equivalence class of con-
nections A, and for notational convenience M is here the group of automorphisms
of p2(A) in [Π1(B2), G] (note that this M depends on A, which we are considering
fixed for now), we get:

(133) (PS′)∗ ◦ (PS)∗F (A′) =
⊕

A

(

⊕

[g]:p2(A)→ p′

1
(A′)

C[GA′ ]⊗C[GA×M GA′ ] F (A)
)

since GA×M GA′ is the automorphism group of the object in [Π1(S
′ ◦ S), G] which

restricts to A and A′ by gluing along g. The outside direct sum here is written over
all connections A on S, but note that the only ones which contribute any factor
are those for which g : p2(A)→ p′1(A

′) for some g. The inside direct sum is over
all isomorphism classes of elements g for which this occurs: in the colimit, vector
spaces over objects with isomorphisms between them are identified.

Note that in the direct sum over [g], there is a tensor product term for each
class [g] : p2(A)→ p′1(A

′). By the definition of the tensor product over an algebra,
we can pass elements of C[GA ×M GA′ ] through the tensor product. These are
generated by pairs (h, k) ∈ GA × GA′ where the images of h and k are conjugate
by g so that p2(h)g = gp′1(k). These are just automorphisms of g: so this says we
are considering objects only up to these isomorphisms.

This is the result of the “pull-push” side of the square applied to F . Now consider
the “push-pull” side: (p′1)

∗ ◦ (p2)∗.
First, pushing down to B2, we get, on any connection A′′ on B2 (whose auto-

morphism group is M):

(134) (p2)∗F (A′′) =
⊕

p2(A)=A′′

C[M ]⊗C[GA] F (A)

Then, pulling this back up to S′, we get (with M again the symmetry group of
p2(A)) that:

(135) (p′1)
∗ ◦ (p2)∗F (A′) =

⊕

g:p2(A)→ p′

1
(A′)

(C[M ]⊗C[GA] F (A)
)

Now we define a natural isomorphism

(136) γS,S′ : (PS′ )∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗

as follows. For each A′, this must be an isomorphism between the above vector
spaces. The first step is to observe that there is a 1-1 correspondence between the
terms of the first direct sums, and then secondly to note that the corresponding
terms are isomorphic.

Since the outside direct sums are over all connections A on S for which p2(A) =
p′1(A

′), it suffices to get an isomorphism between each term. That is, between

(137)
⊕

[g]:p2(A)→ p′

1
(A′)

C[GA′ ]⊗C[GA×M GA′ ] F (A)

and

(138) C[M ]⊗C[GA] F (A)

In order to define this isomorphism, first note that both of these vector spaces
are in fact C[GA′ ]-modules. An element of GA′ acts on (137) in each component by
the standard group algebra multiplication, giving an action of C[GA′ ] by extending
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linearly. An element g ∈ GA′ acts on (138) by the action of p′1(g) on C[M ]. Two
g ∈ [g] have the same action on this tensor product, since they differ precisely by
(h, k) ∈ GA ×GA′ , so that g2p2(h) = p′1(k)g1.

Also, we notice that, in (137), for each g ∈ M , the corresponding term of the
form C[GA′ ] ⊗C[GA×MGA′ ] F (A) is generated by elements of the form k ⊗ v, for
k ∈ C[GA′ ]. and v ∈ F (A). These are subject to the relations that, for any
(h, k1) ∈ C[GA]×C[GA′ ] such that p2(h) = g−1p′1(k1)g:

(139) kk1 ⊗ v = k(h, k1)⊗ v = k ⊗ (h, k1)v = k ⊗ hv

since elements of C[GA]×C[GA′ ] act on F (A) and C[GA′ ] by their projections into
the first and second components respectively.

Now, we define the map γA,A′ . First, for any element of the form k ⊗ v ∈C[GA′ ]⊗C[GA×M GA′ ] F (A) in the g component of the direct sum (137):

(140) γA,A′(k ⊗ v) = p′1(k)g
−1 ⊗ v

which we claim is in C[M ] ⊗C[GA] F (A). This map extends linearly to the whole
space.

To check this is well-defined, suppose we have two representatives k1 ⊗ v1 and
k2 ⊗ v2 of the class k ⊗ v. So these differ by an element of C[GA ×M GA′ ], say
(h, k), so that

(141) k1 = k2k

, and

(142) hv1 = v2

where

(143) p2(h) = gp′1(k)g
−1

But then

γA,A′(k1 ⊗ v1) = p′1(k1)g
−1 ⊗ v1(144)

= p′1(k2k)g
−1 ⊗ v1

= p′1(k2)g
−1gp′1(k)g

−1 ⊗ v1

= p′1(k2)g
−1p2(h)⊗ v1

= p′1(k2)g
−1 ⊗ hv1

while on the other hand,

γA,A′(k2 ⊗ v2) = p′1(k2)g
−1 ⊗ v2(145)

= p′1(k2)g
−1 ⊗ hv1

But these are representatives of the same class in C[M ] ⊗C[GA] F (A), so γ is well
defined on generators, and thus extends linearly to give a well-defined function on
the whole space.

Now, to see that γ is invertible, note that given an element m⊗v ∈ C[M ]⊗C[GA]

F (A) (where we are fixing A, since both 2-vectors decompose into components
corresponding to connections A), we can define

(146) γ−1(m⊗ v) = 1⊗ v ∈
⊕

[g]:p2(A)→ p′

1
(A′)

C[GA′ ]⊗C[GA×M GA′ ] F (A)
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in the component coming from the isomorphism class of g = m−1 (we will denote
this by (1 ⊗ v)m−1 to make this explicit, and in general an element in the class of
g will be denoted with subscript g whenever we need to refer to g).

Now we check that this is well-defined. Given m1⊗ v1 and m2⊗ v2 representing
the same element m⊗ v of C[M ]⊗C[GA] F (A), we must have h1 ∈ GA with

(147) m1p2(h1) = m2

and

(148) h1v2 = v1

But then applying γ−1, we get:

(149) γ−1(m1 ⊗ v1) = (1⊗ v1)m−1

1

= (1 ⊗ h1v2)m−1

1

and

(150) γ−1(m2 ⊗ v2) = (1⊗ v2)m−1

2

= (1 ⊗ v2)p2(h1)−1m−1

1

but these are in the same component, since g ∼ g′ when g′p′1(k) = p2(h)g for
some h ∈ GA and k ∈ GA′ . But then, taking k = 1 and h = h−1

1 , we get that
m−1

1 ∼ m−1
2 , and hence the component of γ(m⊗ v) is well defined.

But then, consider m⊗ v = γ((k ⊗ v)g) = p′1(k)g
−1 ⊗ v. Applying γ−1 we get:

(151) γ−1 ◦ γ(k ⊗ v)g = (1 ⊗ v)gp′

1
(k)−1

so we hope that these determine the same element. But in fact, notice that the
morphism in the weak pullback which gives that g−1 and p′1(k)g

−1 are isomorphic
is just labelled by (h, k) = (1, k), which indeed takes k to 1 and leaves v intact. So
these are the corresponding elements under this isomorphism.

So γ is invertible, hence an isomorphism. Thus we define

(152) βS,S′ = 1⊗ γ ⊗ 1

This is the isomorphism we wanted. �

Remark 14. The weak pullback square gave a natural isomorphism:

(153) α∗ : P ∗
S′ ◦ (p′1)

∗→P ∗
S ◦ p

∗
2

Given a connection on a composite of cobordisms S′ ◦ S, α gives the gauge trans-
formation of the restriction, on their common boundary B2, needed so the gluing
of connections on S and S′ is compatible.

We proved that the other square—the “mate” under the adjunctions, also has a
natural isomorphism (“vertically” across the square), namely that there exists:

(154) βS,S′ : (PS′)∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗

In fact, these are related by the units for both pairs of adjoint functors:

(155) ηS′ : 1ZG(S′◦S)→(PS′)∗ ◦ (PS′)∗

and

(156) η2 : 1ZG(S)→(p2)∗ ◦ (p2)
∗
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So the desired “vertical” natural transformation across the square 125 is deter-
mined by the condition that it complete the following square of natural transfor-
mations to make it commute:

(157) (PS′ )∗ ◦ (PS)∗
1⊗η2 +3

βS,S′

��
�
�
�

�
�
�

(PS′)∗ ◦ (PS)∗ ◦ p∗2 ◦ (p2)∗

1⊗(α∗)−1⊗1

��
(p′1)

∗ ◦ (p2)∗
1⊗ηS′ +3 (PS′)∗ ◦ (PS′)∗ ◦ (p′1)

∗ ◦ (p2)∗

The crucial element of this is the fact that the (weak) pullback square for the
groupoids of connections in the middle of the composition diagram gives rise to
a square of Vect-presheaf categories. To get this we used that the adjunction
between the pullback and pushforward along the π maps had unit and counit 2-
morphisms which turn a natural transformation vertically across the first square
to one horizontally across the second. Note, however, that we do not expect this
to be invertible. When it is, the square is said to satisfy the Beck-Chevalley (BC)
condition. This is discussed by Bénabou and Streicher [17], MacLane and Moerdijk
[67], and by Dawson, Paré and Pronk [29].

Remark 15. It is useful to consider a description of the two functors between
which we have found this natural isomorphism βS,S′—namely, the two 2-linear
maps across the central square in (122). See Remark 7 for the general case. In this
situation, these behave as follows:

First, the “push-pull”: given a functor f : [Π1(S), G]→Vect (i.e. in ZG(S)), in
the first stage, push forward to a functor in ZG(B2). This gives, for each connection
C on B2, a vector space which is the colimit of a diagram of the vector spaces f(Ci)
for all connections Ci on S which restrict to C on B2. In the second stage, pull
back to [Π1(S

′), G]: for each connection C′ on S′, find the connection C it restricts
to on B2, and assign C′ the vector space obtained for C above. Namely, the colimit
of the diagram of vector spaces f(Ci) for connections Ci which also restrict to C.

Next, the “pull-push” given a functor f [Π1(S), G]→Vect, in the first stage, pull
back to a functor on [Π1(ST ), G]. This gives, at each connection C on S′ ◦ S, a
vector space which is just f(C|S), the one assigned to the connection given by C
restricted to S. At the second stage, push this forward to a functor in [Π1(S

′), G].
This gives, at each connection C′ on S′, the colimit of a diagram whose objects are
all the f(Ci|S) obtained in the first stage, for any Ci which restricts to C′ on T .

In both cases there is a colimit over a diagram including all possible connections
on S which match some specified one on S′. This “matching” can occur either
by inclusion in a bigger entity (the composite being the minimal cobordism S′ ◦ S
containing both S and S′). Or it can occur just by matching along the shared
boundary B2. However, since the composition of S and S′ is weak, the groupoid
of connections on S′ ◦ S only needs to have inclusions of the groupoids [Π1(S

′), G]
and [Π1(S), G] which agree on B2 up to gauge equivalence. This gauge equivalence
is part of the specification of an object in the weak pullback of the groupoids of
connections.

Remark 16. We can describe more explicitly the effect of β. Suppose we have a
composite of cobordisms, S′ ◦ S. ,By Lemma 3, we have that the functors (PS′)∗ ◦
(PS)∗ and (p′1)

∗ ◦ (p2)∗ can be written in the form of a matrix of vector spaces
as in (64). The matrix components for each 2-linear map are given by colimits of
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diagrams of vector spaces in groupoids of connections on S′ matching a specified
one on S.

However, the criterion for “matching” is different: when we push first, then pull,
the connections must match exactly on B2; when pulling first, then pushing, the
connections must both be restrictions of one on S′◦S, but are only required to match
up to gauge equivalence α on B2. The isomorphism βA,A′ is just the isomorphism
between the colimits which induced by the permutation of vector spaces associated
to these gauge transformations.

Recall that the source, ZG(S′ ◦S), is given by a matrix indexed by gauge equiva-
lence classes of connections [A1] on B1 and [A3] on B3. The entries are isomorphic
to Cn where n is the number of classes of connections on S2 ◦ S1 restricting to
representatives of [A1] and [A3].

On the other hand, this can be seen (by the isomorphisms β) as a matrix product
of ZG(S′) with ZG(S), which has components given by a direct sum over equivalence
classes [A2] of connections on B2:

(158) [ZG(S2) ◦ ZG(S1)][A1],[A3]

βS,S′

→
⊕

[A2]

[ZG(S)][A1],[A2] ⊗ [ZG(S)][A2],[A3]

Recall that [ZG(S)][A1],[A2]
∼= Cm, where m is the number of gauge equivalence

classes of connections on S which restrict to [A1] and [A2]. Similarly [ZG(S′)][A2],[A3]
∼=Cm′

, where m′ is the number of classes of connections on S′ which restrict to [A2]
and A3. Indeed, the components are just the vector spaces whose bases are these
equivalence classes.

The isomorphism β identifies the composite, whose components count connec-
tions on S′ ◦ S, with this product. This consists of identification maps in each
component. A component indexed by [A1] and [A3] comes from the groupoid of
all connections on S′ ◦ S which restrict to [A1] and [A3] on B1 and B3. Each such
connection restricts to connections on S′ and S by the maps πS′ and πS . These in
turn restrict by π2 and π′

2 to B2 to gauge-equivalent (by α) connections - and those
restricting to different [A2] are in different components of [Π1(S

′ ◦ S), G]. Over each
[A2], the we have the product groupoid of the groupoids of all connections on S
and S′ restricting to this [A2] (and to [A1] and [A3] respectively). So the groupoid
of such connections on S′ ◦ S is isomorphic to a fibred product over ZG(B2).

Then the ([A1], [A3]) component of ZG(S′ ◦ S) is a vector space whose basis is
the set of components of this groupoid, and β is an isomorphism which takes which
takes the vector spaces over this to those in (158).

Example 9. Consider the “pair of pants” cobordism (the “multiplication” cobor-
dism from the generators of 2Cob): This can be seen as a morphism S : B→B′

in 2Cob, where B = S1 ∪ S1 and B′ = S1. The 2-linear map corresponding to
it can be found by the above procedure. To begin with, recall the 2-vector space
on S1 found in Example 7. It is equivalent to [G//G,Vect], the 2-vector space of
Vect-presheaves on G which are equivariant under conjugation by elements of G.

The groupoid of connections on S1∪S1 can be found using the fact that the path
groupoid is just Π1(S

1) ∪ Π1(S
1), a disjoint union of two copies of the groupoid

Π1(S
1) ∼= Z. Notice that this is different from the group Z2, since a group is a one-

object groupoid, whereas here we have a two-object groupoid, each object having
a group of morphisms isomorphic to Z. A functor from this into G amounts to two
choices g, g′ ∈ G, but a gauge transformation amounts to a conjugation by some
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Figure 14. The “Pair of Pants”

h ∈ G at each of the two objects (one chosen base points in each component), so:

[Π1(S
1 ∪ S1), G] ∼= (G×G)//(G×G)(159)

∼= (G//G)2

where G × G acts on itself by conjugation componentwise. This just says that a
connection on the space consisting of two circles is the same as a choice of connection
on each one separately. This is illustrated in Figure 15, where we show the pants
as a disc with two holes, and label a connection on S with its restrictions to the
boundary. The connection on S has holonomies g and g′ around the two holes. On
S1 ∪ S1, this restricts to a connection with holonomies g and g′ respectively, and
on S1 to the product (since the circle around the outside S1 is homotopic to the
composite of the two loops).

Figure 15. Connection for Pants

On the other hand, the manifold with boundary, S, is homeomorphic to a two-
punctured disc, whose path groupoid has a skeleton with one-object, and group of
morphisms π1(S) = F (γ1, γ2), the free group on two generators. Functors from this
into G amount to homomorphisms (g, g′) : F (γ1, γ2)→G. That is, a choice of two
elements of G (the images of the generators). A gauge transformation amounts to
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conjugation at the single object (a chosen base point in S—indicated in Figure 15
as a dot on the loop). So we have the span of connection groupoids:

(160) [Π1(S), G] ∼= (G×G)//G

where G acts on G×G by conjugation in both components at once. Then the span
(118):

(161) (G×G)//G

p1

xxqqqqqqqqqq
p2

%%LLLLLLLLLL

(G//G)2 G//G

Both projections are restrictions of a connection on S to the corresponding con-
nection on the components of the boundary. It is easily seen that p1 leaves objects
intact and takes the morphism corresponding to conjugation by h to that corre-
sponding to conjugation by (h, h). The projection p2 maps object (g, g′) to gg′,
and the morphism for conjugation by h to, again, conjugation by h.

The gauge-equivalent connections on S have holonomies of the form (hgh−1, hg′h−1)
for any h ∈ G, and those for S1 are compatible, since they have holonomies of the
form hgg′h−1 for h ∈ G. Those for S1 ∪S1 can be any connection with holonomies
(hgh−1, h′g′(h′)−1) for any choices of (h, h′) ∈ G2, so that connections which are
gauge equivalent on S1 ∪ S1 may be restrictions of inequivalent connections on S.

Finally, suppose we have a functor f : [Π1(S
1 ∪ S1), G]→Vect, and transport

it to (p2)∗ ◦ p∗1(f) : [Π1(S
1), G]→Vect. To see what this does, note that since

ZG(S1 ∪ S1 that any such f can be written as a sum of irreducible functors (since
ZG(S1 ∪ S1) is a KV 2-vector space). So we can consider one of these, say f ,
which assigns a copy of C to each connection in some gauge-equivalence class, say
([g], [g′]), and 0 to all others. This f assigns an isomorphism, compatibly, to each
gauge transformation (i.e. pair of elements (h, h′)). Such an isomorphism amounts
to multiplication by a complex number—so we get a representation ρ : G×G→C.

Now pull f back to p∗1(f) : [Π1(S), G]→Vect, a functor f(p1(A)). This as-
signs a copy of C to any connection on S which restricts to any representative
of ([g], [g′])—note that these are not all equivalent. To any gauge transformation
given by conjugation by h, it assigns the isomorphism ρ(h, h). So we get the rep-
resentation ρ ◦∆ : G→C for each equivalence class (where ∆ : G→G × G is the
diagonal map).

Then push p∗1(f) forward to (p2)∗ ◦ p∗1(f) : [Π1(S
1), G]→Vect. To each connec-

tion on S1 (represented by g1 ∈ G) the colimit over the diagram of all connections
restricting to g1. That is, over all (g, g′) such that gg′ = g1. So then we get a copy
of C for each pairs of representatives of [g] and [g′] which give g1 as a product:
note that there may be more than one such, which are not gauge equivalent in
[Π1(S), G]. The diagram of all these amounts (by taking its skeleton) to just a
disjoint union of gauge-equivalence classes in [Π1(S), G].

For each class (since all copies of C over it are equipped with compatible isomor-
phisms) we just get one copy of C. The group G thought of as the group of gauge
transformations acts on each copy of C. If it acts nontrivially, then in the colimit,
at least two points in that C will be identified (since the isomorphisms given by the
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G-action must agree with the maps into the colimit). If this happens, that copy ofC collapses to zero.
So finally we have that

(162) (π2)∗ ◦ π
∗
1(g1) ∼=

⊕

(g,g′)∈([g],[g′])|gg′=g1

C[Aut(g1)]⊗C[Aut(g,g′)] C
where the direct sum is over all non-equivalent (g, g′) representing ([g], [g′]) and
satisfying gg′ = g1, and the action of G on each component is as we have described.
On morphisms, we get the direct sum of the isomorphisms between these copies ofC.

We can describe this as a categorified “convolution of class functions” on G.
This is related to Example 6, the group 2-algebra on a group. Note that this is
almost the 2-vector space of Vect-presheaves on the groupoid of connections on
S1 - except that here only “equivariant” functors, where there are isomorphisms
between spaces over conjugate elements of G, are considered. For such functors,
the “pants” morphism amounts to multiplication in the group 2-algebra.

An important special case of a higher cobordism for our extended TQFT is the
one where the objects in nCob2 are empty manifolds ∅. Then cobordisms between
these are themselves manifolds without boundary, and cobordisms between these
have boundary, but no nontrivial corners. So we have just a cobordism from one
manifold to another. It is reasonable to expect that in this case, the extended
TQFT based on a group G should give results equivalent to those obtained from a
TQFT based on the same group, suitably reinterpreted.

Example 10. Consider a manifold S, thought of as a cobordism S : ∅→∅. We
expect that finding our ZG(S) for such a cobordism should be like finding the vector
space assigned to the manifold S by an ordinary TQFT.

To see this, first note that Π1(∅) = ∅, the empty category, and since this is the
initial category, there is a single functor from it to G, hence [Π1(∅), G] = 1, the
category with one object and one morphism. Thus, Z(∅) ∼= Vect

Now, since every connection on S “restricts” to the unique trivial connection on
∅, the 2-linear map takes Vect to Vect, and can be represented as a 1× 1 matrix
of vector spaces. In other words, the operators both involve tensoring with a single
vector space.

Too see which vector spaces this is, begin with a 2-vector in Z(∅) ∼= Vect. This
amounts to a choice of a vector space, say V ∈ Vect. Pulling back to S, we simply
get the functor assigning a copy of V to every object of the groupoid [Π1(S), G].
Isomorphisms from V to V must be assigned to every arrow in this groupoid. But
there is a unique isomorphism is [Π1(∅), G], namely the identity—so the pullback
to S must assign the identity to every arrow.

So in fact, taking the pushforward gives a colimit of a diagram which has a single
copy of V for each isomorphism class in [Π1(S), G], which decomposes as a direct
sum of these classes. This is since the colimit for just one class is just V , and for
the whole groupoid is the direct sum of one copy of V from each isomorphism class.

So we have that:

(163) (π2)∗ ◦ π
∗
1(−) ∼= (−⊗Ck)

Where k = |[Π1(S), G]| is the number of connected components of [Π1(S), G].
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If we reinterpret this as assigning Ck to S, thought of as a manifold, this does
indeed recover the usual formula obtained from a TQFT. The TQFT based on
the finite group G will assign to a manifold the Hilbert space of complex-valued
functions on the space of connections (strictly) modulo gauge transformations. This
is equivalent to what we have just found.

The final element of our weak 2-functor is its effect on 2-morphisms, so this is
the subject of the next section.

7.3. ZG on Cobordisms of Cobordisms. Now we consider the situation of a
cobordism between cobordisms. We want to describe our extended TQFT as a weak
2-functor, so we want a bicategory derived from our double bicategory nCob2. By
Theorem 1, this is possible, but we need to see just what a 2-morphism in this
corresponding bicategory looks like. Recall that the source and target morphisms
of the corresponding 2-morphism are those obtained by composing horizontal and
vertical morphisms which form the edges of the square.

Given a square in nCob2, we have a diagram of the form (57). When we turn
this into a 2-cell, the source morphism will be a cospan in the category of manifolds
with corners. It is found by taking the following pushout:

(164) TY ◦ S

S

ιS

<<yyyyyyyyy
TY

ιTY

ccGGGGGGGG

X

ιX

??��������
Y

ιY

bbFFFFFFFFF

ιY

;;wwwwwwwww
Y ′

ιY ′

``BBBBBBBB

The pushout square is the central square here, where we get the object TY ◦ S
equipped with injections ιS and ιTY

which make the square commute, and which is
universal in the sense that any other object with injections from S and TY factors
through TY ◦ S. So in particular, the maps into M can be factorized as the maps
into TY ◦S and the canonical injection ι : TY ◦S→M . A similar argument applies
to the target morphism, so the situation we are interested in can be represented as
a cospan of cospans in the following way:

(165) Π1(M)

Π1(S1)

ι

::ttttttttt
Π1(S2)

ι′
ddJJJJJJJJJ

Π1(X)

ι2 44jjjjjjjjjjjjjjjjjjj

ι1

OO

Π1(Y
′)

ι′
2

OOι′
1

jjTTTTTTTTTTTTTTTTTT

with S1 = TY ◦ S and S2 = S′ ◦ T ′
X .

Given this situation, which is a 2-morphism for the bicategory of cobordisms,
we want to get a 2-morphism in the bicategory 2Vect. That is to say, a natural
transformation αM between a pair of 2-linear maps. The 2-linear maps in question
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are those we get by the construction (119). So in particular,

(166) [Π1(M), G]

π
wwooooooooooo

π′

''OOOOOOOOOOO

[Π1(S1), G]

π1

��

π′

1

++WWWWWWWWWWWWWWWWWWWWWW [Π1(S2), G]
π2

ssgggggggggggggggggggggg

π′

2

��

[Π1(X), G] [Π1(Y
′), G]

And finally, quantizing these configuration groupoids by taking functors into
Vect:

(167)
[

[Π1(M), G],Vect
]

[

[Π1(S), G],Vect
]

π∗

55kkkkkkkkkkkkkk
[

[Π1(S
′), G],Vect

]

π′∗

iiSSSSSSSSSSSSSS

[

[Π1(X), G],Vect
]

π∗

1

OO π′∗

1 22eeeeeeeeeeeeeeeeeeeeeeeeeeeee
[

[Π1(Y
′), G],Vect

]

π∗

2llYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
π′∗

2

OO

Now, recall that each of the pullback maps appearing here has an adjoint, so we
have functors F1 = (π′

1)∗◦π∗
1 and F2 = (π′

2)∗◦π∗
2 from Z(X) =

[

[Π1(X), G],Vect
]

to Z(Y ′) =
[

[Π1(Y
′), G],Vect

]

. A natural transformation will take an object
f ∈ ZG(X) and give a morphism ZG(M)(f) : F1(f)→F2(f) in Z(Y ′) satisfying the
usual naturality condition. Now, an object in ZG(X), namely a 2-vector, is a Vect-
presheaf on the groupoid ofG-connections onX weakly mod gauge transformations.

The hoped-for morphism ZG(M)(f) in Z(Y ′) is just a natural transformation
between two such functors g, g′ : [Π1(Y

′), G]→Vect. That is, it assigns, for
each connection A ∈ [Π1(Y ), G], a linear map between the two vector spaces:
(ZG(M)(f))(A) : g(A)→ g′(A). We want to get ZG(M) from the cobordism with
corners, M . This we define by means of a “pull-push” process, similar to the one
used to define the 2-linear maps in the first place.

However, as remarked in Section 6.2, any natural transformation between a pair
of 2-linear maps between KV 2-vector spaces can be represented as a matrix of linear
operators, as in (65). The matrix in question is indexed by gauge equivalence classes
of connections on X and on Y . Writing Z(S) in the matrix form means that given
a pair ([A], [A′]) of such classes, there is a vector space Z(S)[A],[A′]. Recall that we
found these vector spaces by the “pull-push” process for presheaves along inclusion
maps.

A natural transformation between such functors is a matrix of linear maps, so
we will have

(168) ZG(M)[A],[A′] : ZG(S)[A],[A′]→ZG(S′)[A],[A′]

But now we can use the fact that the top level of the tower of spans of groupoids in
(167) is of the same form as that for cobordisms between manifolds given in (119).
The component linear maps arise by applying a similar “pull-push” process to that
used in Section 7.2 to define ZG on cobordisms.
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Since there are canonical bases [A] ∈ A0(S) and [A′] ∈ A0(S
′) for the vector

spaces Z(S) ∼= Ck and Z(S′) ∼= Ck′

, so we can represent T as a k × k′ matrix. We
then need to describe the effect of T on a vector in Ck. Such a vector amounts to an
assignment of a scalar to each gauge equivalence class of connections in [Π1(S), G].
In particular, to find the component T[A′],[A] indexed by the class [A′] of connections
on S′, and the class [A] on S, take the vector corresponding to the function equal
to 1 on [A] and 0 elsewhere.

The linear map T acts by the “pull-push” operation. The first stage—pullback
gives a function on [Π1(M), G] which is 1 on any gauge-equivalence class of connec-
tions [B] on M restricting to [A] on S. Pushing this forward involves taking a sum
over all classes of connection restricting to [A′] on S′. Clearly, the only nonzero
contributions are from those connections which restrict to [A] on S. The action of
T extends linearly to all of V , so it is represented by a k× k′ matrix whose entries
are indexed by classes of connections.

So indeed, all discussion of the construction of the natural transformation will
parallel the construction of the 2-linear maps, but at a lower categorical level, since
we get a matrix of scalars rather than vector spaces—this time in each component
([A], [A′]). The resulting linear map (and its matrix representation) can then be
“lifted” to a natural transformation between 2-linear maps.

A more tricky question is what contribution to expect from those which do
restrict to [A]. Naively, one might expect to simply take a sum of the function
values (all equal to 1 at the moment) over all such connections. Since this ignores
the morphisms in [Π1(M), G], one might perhaps imagine the sum should be over
only equivalence classes of connections. However, one should suspect that this is
also incorrect, since when we found a pushforward for Vect-presheaves, we took
not a direct sum over equivalence classes, but a colimit.

In fact, the correct prescription involves the groupoid cardinality of the groupoid
of those connections which contribute to the sum. This concept is described by Baez
and Dolan [10], and related to Leinster’s [63] concept of the Euler characteristic
of a category. For a more in-depth discussion of groupoid cardinality, and also of
its role (closely related to the role it plays here) in a simple model in quantum
mechanics, see the author’s paper [72] on the categorified harmonic oscillator.

The cardinality of a groupoid G is:

(169) |G| =
∑

[x]∈G

1

|Aut(x)|

the sum is over isomorphism classes in G. This quantity is invariant under equiv-
alence of categories, and should be the pushforward of the constant function 1. So
we define:

Definition 22. Given cobordism between cobordisms, M : S→S′, for S, S′ :
B→B′, then

(170) ZG(M) : ZG(S)→ZG(S′)

is a natural transformation given by a matrix of linear operators:

(171) ZG(M)j,k : ZG(S)j,k→ZG(S′)j,k

where the vector space ZG(S)j,k is the (j, k) component of the matrix for the 2-linear
map Z(S). This is indexed by choices (j, k), where j identifies an equivalence class
[A] of connections on B.
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The linear map ZG(M)j,k = T is described by the matrix:

(172) T[A],[A′] = |(j × j′)−1(A,A′)|

the groupoid cardinality of the essential preimage of (A,A′), where A is a connection
on S and A′ a connection on S′.

(That is, of the groupoid of all connections on M simultaneously restricting to
a connection gauge equivalent to A on S and A′ on S′.)

Since this is a matrix of linear transformations between the correct vector spaces,
it defines a natural transformation. This is the last element of the extended TQFT
ZG which needs to be defined—Theorem 13 will show that its behaviour on mani-
folds, cobordisms, and cobordisms between cobordisms satisfy the axioms of a weak
2-functor. Two parts of this we prove here separately. The first is strict preserva-
tion of vertical composition; the second is preservation of horizontal composition as
strictly as possible (i.e. up to the isomorphisms β which make comparison possible
- as we will see).

Theorem 11. The assignment ZG(M) to cobordisms with corners given by (172)
preserves vertical composition strictly: ZG(M ′M) = ZG(M ′) ◦ ZG(M).

Proof. Vertical composition is just component-wise composition of linear operators.
So it suffices to show that given any component, composition is preserved. That is,
given a vertical composite of two cobordisms between cobordisms:

(173) B

S1

��S2 //

S3

CCB
′

M��

M ′

��

we get matrices Z(S1)(j,k), Z(S2)(j,k), and Z(S3)j,k, of vector spaces indexed by
connections-and-representations on B and B′ as in Definition 22.

For the following, fix a component—i.e. a gauge equivalence class of connections
[A] on B and representation of Aut([A]), and similarly for B′.

Then we have two linear operators. The first is

(174) ZG(M)j,k = T : Z(S1)(j,k)→Z(S2)(j,k)

and is given as a matrix, indexed by equivalence classes of connections [A1] on S1

and [A2] on S2, as follows. The component T[A1],[A2] is the groupoid cardinality of
the groupoid of all connections on M which are gauge equivalent to ones restricting
to both A1 and A2—that is, the essential preimage of (A1, A2). Denote this by

| ̂(A1, A2)|.
The second operator

(175) ZG(M ′)j,k = T ′ : Z(S2)(j,k)→Z(S3)(j,k)

is likewise a matrix, indexed by equivalence classes of connections [A2] on S2 and

[A3] on S3, where T ′
[A2],[A3]

= | ̂(A2, A3)|, the groupoid cardinality of the essential

preimage of (A2, A3) (a groupoid of connections on M ′).
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The product of these is then just given by matrix multplication, so that

(176) (T ′T )[A1],[A3] =
∑

[A2]

| ̂(A1, A2)| × | ̂(A2, A3)|

That is, to get the component of the image of a delta functon on [A1] in the
connection [A2], one takes a sum over equivalence classes of connections [A2] on
B2. The sum is of of the products of the groupoid cardinalities of connections on
M and M ′ restricting to this [A2].

We need to show this is the same as the linear operator obtained from the same
(j, k) component for the 2-morphism ZG(M ′M). But we know that

(177) ZG(M ′M)(j,k) = R : Z(S1)(j,k)→Z(S3)(j,k)

has component

(178) | ̂(A1, A3)|

the groupoid cardinality of the essential preimage of (A1, A3), which is a groupoid
of connections on M ′M . So we really just need the fact that groupoid cardinalities
behaves well with respect to sum and product.

In particular, ̂(A1, A3) is a groupoid of connections on M ′M , but each of these
has a restriction to S2, and if two connections on M ′M have gauge-inequivalent

restrictions to S2, they must be gauge inequivalent. So ̂(A1, A3) is a direct sum over
the possible gauge-equivalence classes of restrictions [A2] to S2. Since the groupoid
cardinality of a direct sum of groupoids is the sum of their cardinalities, we thus
have

(179) | ̂(A1, A2)| =
∑

[A2]

| ̂(A1, A2, A3)|

where ̂(A1, A2, A3) is the groupoid of connections on M ′M which restrict to all the
Ai simultaneously.

However, we claim this is just the cartesian product of groupoids. This is since
M ′M is an equivalence class of manifolds with corners, where a standard represen-
tative for M ′M is a representative for M ′ and for M , identified at the images of
the common inclusions of S2. By a generalization of the Meyer-Vietoris theorem
(see, for instance, Brown [18]) we have Π1(M

′M) likewise is a disjoint union of
Π1(M

′) and Π1(M), modulo the equivalence of the images of Π1(S2). But then,
taking functors into G, we have [Π1(M

′M), G] is a subgroupoid of the product
[Π1(M

′), G]× [Π1(M), G], containing only the objects (connections) such that the
connections in the two components agree on S2. Since we have fixed a particular
connection A2 on S2, we just get the cartesian product of groupoids of connections
on M ′ and M respectively which restrict to A2.

Now, since the groupoid cardinality of a cartesian product of groupoids is the
product of their groupoid cardinalities, we have

(180) R[A1],[A3] = (T ′T )[A1],[A3]

so ZG preserves vertical composition of 2-morphisms strictly. �

A similar result holds for vertical composition.
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Theorem 12. The assignment ZG(M) to cobordisms with corners given by (172)
preserves horizontal composition strictly, up to the isomorphism weakly preserving
composition of the source and target morphisms:
(181)

ZG(B)

ZG(S′

1◦S1)

$$

ZG(S′

2◦S2)

::

ZG(S1)

**

ZG(S′

1)

44
ZG(B′)

ZG(S2)

**

ZG(S′

2)

44
ZG(B′′)M

��
M ′

��

βS1,S′
1

��

β−1

S2,S′
2

��

= ZG(B)

ZG(S′

1◦S1)

''

ZG(S′

2◦S2)

77
ZG(B′′)ZG(M ′⊗HM)

��

Proof. The horizontal composition involves “matrix multiplication” at the level of
composition of 2-linear maps. Given a horizontal composite

(182) B

S1

��

S2

AAB
′

S′

1

��

S′

2

AAB
′′M

��

M ′

��

the functor ZG assigns 2-linear maps to the cobordisms S1, S2, S
′
1, and S′

2, and
natural transformations to M and M ′. Then the horizontal composite is a natural
transformation

(183) ZG(M ′ ⊗H M) : ZG(S′
1) ◦ ZG(S1)→ZG(S′

2) ◦ ZG(S2)

As discussed in Remark 16, the isomorphisms β allow comparison of the hor-
izontal composite of natural transformations ZG(M ′) ⊗ ZG(M) with the natural
transformation ZG(M ′⊗H M). The presence of the β isomorphisms only allows us
to disregard the distinction between ZG(S2 ◦S1) and ZG(S2)◦ZG(S1) (and likewise
for the S′).

So first consider ZG(M ′) ⊗ ZG(M), the horizontal composite of the natural
transformations in 2Vect corresponding to the cobordisms with corners. Each of
these natural transformations can be represented as a matrix of linear maps:

(184) ZG(M)[A1],[A2] : V[A1],[A2]→W[A1],[A2]

where the V ’s are the coefficients of ZG(S1) and W ’s are those of ZG(S2). The
coefficients of ZG(M ′) are similarly

(185) ZG(M ′)[A2],[A3] : V ′
[A2],[A3]→W ′

[A2],[A3]

Then the horizontal product ZG(M ′)⊗ZG(M) will be given by the matrix of linear
maps:
(186)
⊕

[A2]

(

ZG(M)[A1],[A2]⊗ZG(M ′)[A2],[A3]

)

:
⊕

[A2]

(

V[A1],[A2]⊗V
′
[A2],[A3]

)

→
⊕

[A2]

(

W[A1],[A2]⊗W
′
[A2],[A3]

)

The ([A1], [A3]) component of this product is a linear map given as a block
matrix, with one block for each gauge equivalence class of connections [A2] on B2,
and whose blocks consist of the tensor product of the matrices from the components



EXTENDED TQFT’S AND QUANTUM GRAVITY 85

of ZG(M) and ZG(M ′). So suppose these are, respectively, n × m and n′ × m′

dimensional matrices. Then the result is an (n× n′)× (m×m′) matrix, where the
((i, i′), (j, j′)) component is the product of the (i, j) component of ZG(M) and the
(i′, j′) component of ZG(M ′).

Recall that these indexes mark connections on the cobordisms: the (i, j) com-
ponent of ZG(M) is the groupoid cardinality of the groupoid of connections on M
which match the ith on S1 and the jth on S2; and the (i′, j′) component of ZG(M ′)
is the groupoid cardinality of the groupoid of connections on M ′ which match the

i′
th

on S′
1 and the j′

th
on S′

2. But this is the groupoid cardinality of the prod-
uct groupoid whose objects are just these pairs, since groupoid cardinality respects
products.

Next consider ZG(M ′⊗HM), the natural transformation in 2Vect corresponding
to the horizontal composite of the cobordisms with corners. Again, this can be
represented as a matrix of linear maps indexed by pairs ([A1], [A3]) just as above:

(187) ZG(M ′ ⊗H M)[A1],[A3] : U[A1],[A3]→X[A1],[A3]

where the U have a basis of equivalence classes connections on S′
1 ◦ S1, and the X

on S′
2 ◦ S2, which restrict to [A1] and [A3].

But on the other hand, using the β isomorphisms to identify the source and
targets allows us to compare this directly to the other side.

But the groupoid of connections on S′
1 ◦S1 has the restriction maps pS and pS′

to give connections on S and S′. Moreover, the connections obtained this way agree
up to gauge equivalence on B2 (since composition of cobordisms is given by a weak
pushout). The gauge equivalence up to which these agree is given by the natural
isomorphism α from the weak pullback of connection groupoids. So the components
U[A1],[A3] decompose as a direct sum over [A2] on B2 of pairs of connections, one on
S1, and one on S′

1, each of which restricts to [A2] and either [A1] or [A3]. Similarly
for the vector spaces X[A1],[A3].

Now, the groupoid of all connections on M ′ ⊗H M is a fibred product over
[Π1(B2), G], since each such connection restricts to just one gauge equivalence class
on B2. Then for each such [A2], the groupoid of connections decomposes as a
product over choices of restrictions to the S on each side. So it is just a product
of the groupoids of connections on M ′ and M , separately, which restrict [A2].
Restrictions to S′

1 ◦ S1 and S′
2 ◦ S2 each give separate restrictions to the two

halves. Then the cardinality of this groupoid in any component (i.e. with any
particular restrictions to source and target) is just the product of the groupoid
cardinalities for the corresponding restrictions on M ′ and M ′.

But this is exactly what we found for ZG(M ′) ⊗ ZG(M). So the two sides are
equal as required. �

Again, a special instance of an extended TQFT is when it “restricts” to a TQFT.

Example 11. Returning to the example of cobordisms between empty manifolds,
suppose we have two such cobordisms S and S′, and a cobordism with (trivial!)
corners M : S→S′. In fact, the effect should be similar to that of evaluating a
TQFT on M thought of as a cobordism between manifolds, in a precisely analogous
way that ZG(S) can be thought of as a TQFT giving a vector space for the manifold
S.
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In particular, we have, by the argument in Example 10, that:

(188) Z(S) ∼= (−⊗Ck)

and

(189) Z(S′) ∼= (− ⊗Ck′

)

where k and k′ are the number of isomorphism classes of connections on S and S′

respectively. If we think of these as being vector spaces Ck and Ck′

assigned by a
TQFT, then a cobordism should assign a linear map T : Ck→Ck′

. Indeed, such a
linear map will give rise to a natural transformation from Z(S) to Z(S′) by giving,
for any objects V ∈ Vect on the left side of the diagram, the map 1V ⊗ T on the
right side. Moreover, all such natural transformations arise this way.

Now, the diagram from (167) gives rise to a 2-morphism in Cat:

(190) Vect

(π2)∗◦π∗

1

��

(π′

2
)∗◦(π

′

1
)∗

??VectZ(M)

��

Here, Z(M) arises from the 2-linear map

(191) π′
∗ ◦ π

∗ :
[

[Π1(S), G],Vect
]

→
[

[Π1(S
′), G],Vect

]

as described in Definition 22.

Having now described the effect of the extended TQFT at each level - manifolds,
cobordisms, and cobordisms with corners—it remains to check that these really
define a 2-functor of the right kind. This is the task of Section 7.4.

7.4. Main Theorem. Now let us recap the discussion so far. For each finite group
G, we want to get a weak 2-functor from the bicategory associated to the double
bicategory of cobordisms with corners into 2-vector spaces, ZG : nCob2→2Vect.
This has three aspects, for which we then must verify some properties.

To a compact (n − 2)-manifold, ZG assigns a 2-vector space. This consists of
Vect-presheaves on the groupoid of G-connections on B weakly modulo gauge
transformations.

To a cobordism between (n− 2)-manifolds, S : B→B′ in nCob2, ZG assigns a
span of the groupoids of G-connections, as in (118). Then a Vect-presheaf F on
[Π1(B), G] can be transported along the span by first pulling back onto [Π1(S), G]
along the restriction π of connections on S to connections on B. We then push
forward this pullback π∗F along the restriction π′ of [Π1(S), G] to [Π1(B

′), G] to
give a Vect-presheaf π′

∗ ◦ π
∗F on [Π1(B

′), G].
To a cobordism between cobordisms, ZG assigns a natural transformation in a

similar fashion. Given two functors corresponding to cobordisms, as above, if there
is a cobordism between them, it defines a way to push forward a vector in any
of the component vector spaces of the functor, written as a matrix. This is done
by pulling back the function on the basis defined by the vector, and then pushing
forward using a weight given by the groupoid cardinality.

This construction is to give a weak 2-functor. This must be equipped with nat-
ural isomorphisms βS,S′ : ZG(S′ ◦ S)→ZG(S′) ◦ ZG(S) giving weak preservation
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of composition, as described in Theorem 10. It also must have a natural transfor-
mation UB : 1ZG(B)→̃ZG(1B) giving weak preservation of units. Note that for any
(n − 2)-manifold B, the idenity 1B is a cobordism I × B, which has the manifold
B embedded as {(0, b)|b ∈ B} and {(0, b)|b ∈ B} (and this cobordism is exactly
the collar on both source and target). Then we note that there is an equivalence
of categories between [Π1(B), G] and [Π1(1B), G] since B and 1B have the same
homotopy type. So ZG(1B), which uses a “pull-push” through the groupoid of
connections on I ×B, is equivalent to the identity on 1ZG(B).

Definition 23. Given a finite group G, the extended TQFT ZG is a 2-functor
defined as follows:

• For a closed compact manifold B, the weak 2-functor assigns a 2-vector
space:

(192) ZG(B) =
[

[Π1(B), G],Vect
]

• For a cobordism between manifolds:

(193) B
i
→S

i′
←B′

the weak 2-functor assigns a 2-linear map:

(194) ZG(S) = (p′)∗ ◦ p
∗

where p and p′ are the associated projections for the underlying groupoids
of connections weakly modulo gauge transformations.
• For a cobordism with corners between two cobordisms with the same source

and target:

(195) S1

i

��

B

i1
>>~~~~~~~~

i2   @
@@

@@
@@

@ M B′

i′
1

``AAAAAAAA

i′
2~~}}

}}
}}

}}

S2

i′

OO

the weak 2-functor assigns a natural transformation α, whose components
(in the matrix representation) are as in (172).

The 2-functor ZG also includes the following:

• For each composable pair of cobordisms S : B1→B2 and S′ : B2→B3, a
natural isomorphism

(196) β : ZG(S′ ◦ S)→ZG(S′)→ZG(S)

, as described in Theorem 10.
• For each object B ∈ nCob2, the natural transformation

(197) UB : 1ZG(B)→̃ZG(1B)

is the natural transformation induced by the equivalence between [Π1(B), G]
and [Π1(1B), G].

Then we have the following:

Theorem 13. For any finite group G, there is a weak 2-functor ZG : nCob2→2Vect
given by the construction in Definition 23.
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Proof. First, we note that by the result of Theorem 8, we know that ZG assigns a
2-vector space to each object of nCob2.

If S : B→B′ is a cobordism between compact manifolds—i.e. a morphism in
nCob2, the map ZG(S) defined in Definition 21 is a linear functor by the result of
Theorem 6, since it is a composite of two linear maps. This respects composition,
as shown in Theorem 10.

Next we need to check that our ZG satisfies the properties of a weak 2-functor:
that the isomorphisms from the weak preservation of composition and units satisfy
the requisite coherence conditions; and that ZG strictly preserves horizontal and
vertical composition of natural transformations.

The coherence conditions for the compositor morphisms

(198) βS,T : ZG(T ) ◦ ZG(S)→ZG(T ◦ S)

and the associator say that these must make the following diagram commute for
all composable triples of cobordisms (S1, S2, S3):

(199)

ZG(S3) ◦ ZG(S2) ◦ ZG(S1)

ZG(S3 ◦ S2) ◦ ZG(S1)

ZG((S3 ◦ S2) ◦ S1)ZG(S3 ◦ (S2 ◦ S1))

ZG(S3) ◦ ZG(S2 ◦ S1)

1⊗β2,1

66nnnnnnnnnnnnnnn

β3,2⊗1

hhPPPPPPPPPPPPPPP

β3,21

OO

β32,1

OO

ZG(α3,2,1)
//

We implicitly assume here a trivial associator for the 2-linear maps in the ex-
pression ZG(S3) ◦ ZG(S2) ◦ ZG(S1). This is because each 2-linear map is just a
composite of functors, so this composition is associative. But note that we can sim-
ilarly assume, without loss of generality, that the associator α for composition of
cobordisms is trivial. The composite S2 ◦S1 is a pushout of two spans of manifolds
with boundary:

(200) S2 ◦ S1

S1

I1

;;wwwwwwwww
S2

I2

ccGGGGGGGGG

B1

i1

>>}}}}}}}}
B2

i2

ccGGGGGGGGG i′
1

;;wwwwwwwww
B3

i′
2

``AAAAAAAA

This pushout is only defined up to diffeomorphism, but one candidate is S1

∐

S2/ ∼,
where i1(x) ∼ i2(x) for any x ∈ B2. Any other condidate is diffeomorphic to this
one. But then, the associator

(201) α3,2,1 : ZG(S3 ◦ (S2 ◦ S1))→ZG((S3 ◦ S2) ◦ S1)

is just the identity. (Choosing different candidates for the pushouts involved would
give a non-identity associator).
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So it suffices to show that, with this identification,

(202) (1 ⊗ β2,1) ◦ β3,21 = (β3,2 ⊗ 1) = ◦β32, 1

This is verified by a computation we leave to the reader.
In general, the coherence conditions for the “unit” isomorphism

(203) UB : 1ZG(B)→̃ZG(1B)

which weakly preserves identities say that it must make the following commute for
any cobordism S : B→B′:

(204) ZG(S)

ZG(S) ◦ ZG(1B)

1⊗UB

OO

ZG(S ◦ 1B)

ZG(rS)
hhQQQQQQQQQQQQQ

βS,1Boo

where rB is the right unitor for B. There is also the symmetric condition for the
left unitor.

We notice that, as with ZG(1B), ZG(rB) is equivalent to the identity since we
can think of the unitor rS : S ◦ 1B→S as a mapping cylinder diffeomorphic to
I×S. Since S ◦ 1B and S are diffeomorphic, these are embedded as the ends of the
cylinder.

So the condition amounts to the fact that βS,1B
: ZG(S◦1B)→ZG(S)◦ZG(1B) =

ZG(S) is equivalent to the identity in such a way that (204) commutes. We again
leave this to the reader. �

This weak 2-functor is our extended TQFT.

8. Extended TQFT’s and Quantum Gravity

The title of this paper is “Extended TQFT’s and Quantum Gravity”, but so far
we have said much about the former and nearly nothing about the latter. Yet, de-
spite the intrinsic interest extneded TQFT’s in themselves, the prospect of applying
these results, or very similar ones, to quantum gravity has been one of the major
motivations behind this work. The prospects for doing this are good, at least in
a low-dimensional toy model. In (2+1) dimensions (two dimensions of space, and
one of time), or 3 dimensions (with no time dimension), Einsteinian gravity is a
topological theory, whereas in higher dimensions it is not.

So more specifically, the immediate result of extending our results here will
be not, in general, quantum gravity, but a topological gauge theory called BF
theory. The connection to gravity is that this is the same as Einsteinian gravity
in 3 dimensions, and in 4-dimensions it is a limit of Einsteinian gravity as G→ 0
(where G is Newton’s constant). This is a limitation of our approach, but quantum
gravity is a large and mostly open field (see for instance Rovelli’s survey [77] of
some of the work to date); so finding a clear framework for certain, fairly simple,
cases is a useful project.

In this final chapter, we sketch what kind of extension is needed, and the impli-
cations of this work for quantum gravity in the case. This chapter is not intended
to be mathematically rigorous. Its role is to describe in an impressionistic way some
of the mathematical and physical context for this work, as well as to suggest the
directions for its future development.
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8.1. Extension to Lie Groups. The first thing to consider is the possibility of
extending the analysis we have made for extended TQFT’s corresponding to finite
groups. In particular, we are interested in an analog of the preceding when G
is a Lie group. In particular, there is a special case of interest, which is when
G = SU(2), and n = 3: that is, considering ZSU(2) : 3Cob2→2Vect. We will
describe here how such a theory, if it is possible to construct it, would be related to
a well-studied theory of quantum gravity in three dimensions: the Ponzano-Regge
model.

The theorems so far apply only when G is a finite group. However, we have
seen in Section 6.3 that there is a notion of an infinite-dimensional 2-vector space
2L2X for a measure space (X,µ), consisting of maps from X into Vect. This is
an infinite dimensional analog of the functor category [X,Vect] which was used in
constructing an extended TQFT from a finite group (though we must restrict to only
“measurable” functors). In particular, it should still make sense to define a 2-vector
space

[

[Π1(B), G],Vect
]

for a manifold B. This involves both a generalization and
a specialization from the Crane-Yetter 2-vector space Meas(X), since in that case
X was a measurable space, wheareas in the case of a Lie group it comes equipped
with a standard measure (Haar measure), but we also consider its path groupoid,
rather than merely the set. So one would need to extend the theory of categories of
measurable fields of Hilbert spaces to a theory of categories of measurable functors
into Vect from such a measurable groupoid.

Now, the construction used for a finite group used several facts we showed for
finite groupoids. For example, Theorem 6 established that the 2-linear map given
by pushforward is the adjoint of that given by pullback. However, we only showed
this for finite groupoids. In general, if G is not finite, [Π1(B), G] is not an essentially
finite groupoid. So this and other theorems would need to be extended to the case of
Lie groups. In particular, since 2-vector spaces need not contain arbitrary infinite
colimits, the pushfoward we described may not exist. So we need the infiinite-
dimensional 2-vector spaces in Crane and Yetter’s Meas, as discussed in Section
6.3.

So in particular, such an extension should take advantage of the Haar measure
on G to define the pushforward of a functor on a space by direct integration, rather
than by simply taking a general colimit (which need not exist). This and other such
constructions would need to be justified in order to try to imagine constructing an
extended TQFT from a Lie group as we have described with a finite group. It seems
most clear how this would work in the case where G is compact, since compact Lie
groups have finite total Haar measure. If the total measure of the group were
infinite, we would not expect the integrals one would use in these definitions to
converge, and there would be a problem of well-definedness.

Then in cases where the direct integral exists, we would expect, by analogy with
the formula from Definition 21 that the component in some connection A′ on B′ of
Z(S) applied to a “state” 2-vector Ψ ∈ Z(B) is:

(205) (Z(S)Ψ)(A) =

∫ ⊕

[Π1(B),G]

(

∫ ⊕

[Π1(S),G]

Ψ(A)dA
)

dA′

Where [Π1(S), G] is the set of connectionsA on S such thatA|B = A′ and A|′B = A′.
Both integrals are “direct integrals” of Hilbert spaces. The outer integral, over B,
uses the principle that Ψ can be represented as a direct integral (though not a
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finite linear combination) of simple objects in ZG(B). The direct integral over
connections on S stands in for a general colimit. This assumes that we can treat
the “pushforward” phase of ZG(S) as a direct integral (rather than a direct sum)
of quotient spaces.

Here we are integrating with respect to a measure on the space of connections.
Since this consists of functors from a finitely generated groupoid intoG, the measure
is derived from the Haar measure on G.

Presuming that this is justified, it should be possible to extend the main results
(somewhat modified) from this discussion of extended TQFT’s to the case where G
is any compact Lie group (and possibly any Lie group). The groups of major interest
to quantum gravity are rotation groups of various signatures, and their double
covers (which are used in describing spin connections) . For example, connections
valued in Euclidean rotation groups SO(3) and SO(4), and their double covers
SU(2) and SU(2)×SU(2), are relevant to 3- and 4-dimensional Euclidean quantum
gravity respectively.

More precisely, since what we have discussed are flat connections, this remark
needs to be qualified. Flat SU(2) connections do indeed describe configurations
for 3D quantum gravity, since in that case, gravity is a purely topological theory.
(For more background on 3D quantum gravity, particularly in the case of signature
(2, 1), see work by Steven Carlip [22], [21]).

However, in 4 dimensions, a theory of flat connections does not describe gravity,
but rather a limiting case of Einsteinian gravity as Newton’s constant G→ 0. The
subject of this limit, and in general the deformation of gauge theories, is considered
extensively by Wise [87]. What is true in 4 dimensions is that the purely topological
theory corresponds to a theory of flat connections on a manifold known as BF
theory. and by Freidel, Krasnov and Puzio [38]). To describe a theory of gravity
would need something more than what is discussed here. In Section 8.3 we briefly
consider some possible approaches to this problem.

8.2. Ponzano-Regge with Matter. If G = SU(2), the objects of A0//G, just as
for a finite group, are equivariant functors from [Π1, SU(2)] to Vect, and can be
represented in terms of a basis of irreducible objects. Assuming that the previous
results hold when G is a Lie group, an irreducible object amounts to a choice
of conjugacy class in SU(2) and action of SU(2) on the associated vector spaces
coming from the isomorphism assocated to conjugation by g. Let us assume that
when we replace finite G by the Lie group SU(2), we retain the classification of
Example 7. Then irreducible 2-vector by pairs ([g], ρ) of a conjugacy class [g] ∈
SU(2)/Ad(SU(2)), and representation ρ of SU(2) on some vector space V . Now, a
conjugacy class in SU(2) amounts to specifying an angle of rotation in [0, 4π]. This
is since this is the double cover of the 3D rotation group, and all rotations by the
same angle are conjugate to all others by some rotation taking one axis of rotation to
the other. This number in [0, 4π] represents a mass in 3D quantum gravity—which
manifests as an angle deficit when one traces a path around a massive particle,
one finds, geometrically, that one has rotated by a certain angle proportional to its
mass, which has a maximum total mass allowable of 4π in Euclidean 3D gravity.

On the other hand, a representation of SU(2) is classified by a half-integer, which
is called a spin since these label angular momenta for spinning quantum particles.
This is exactly the other attribute a particle in the 3D Ponzano-Regge model may
have. Mass and spin are the characteristics which determine the effect of a particle
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on the connection—that is, its gravitational effect. In the Ponzano-Regge model,
mass and spin label the edges of a graph describing space. In the case that the
mass on an edge is zero, this describes a spin network, as described first by Penrose
[76]. A spin network is a combinatorial representation of the geometry of space.

Penrose’s original idea was that a quantum theory of gravity should describe
space in intrinsically discrete terms. The description as a graph is intrinsically dis-
crete. Edges are labelled with spins since these are representations of the symmetry
group related to angular momentum. This was chosen because angular momentum
is already discrete in quantum mechanics, and is plainly related to the (local) ro-
tational symmetry of space.

Such spin networks are related to the Ponzano-Regge model for 3D quantum
gravity. The interpretation in terms of gravity comes from the observation that a
conjugacy class in SU(2) is an angle in [0, π], which is a mass m; In the case m = 0
the isomorphism is just a spin—an irrep of SU(2), labelled by an integer (or, for
physics purposes, a half-integer). For other m, we get a spin when we reduce to a
skeletal version of the 2-vector spaces.

Figure 16. Irreducible Object in ZSU(2)(S
1)

The Ponzano-Regge model is a quantum theory which reproduces classical Gen-
eral Relativity in a suitable limit. Now, in General Relativity, gravity can be
thought of as the theory of a connection on a manifold, which is the Levi-Civita
connection associated to the metric in the usual formalism. So the Ponzano-Regge
model can be seen as a quantum theory for a connection on space of a given topol-
ogy.

We can think of a cobordism with corners, as in Figure 1 as having boundaries
indicating the boundary of the world lines of some system. We can think of this
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as a Feynman graph for some particles. This interpretation makes the most sense
if our group G is a Lorentz group, so that we think of the underlying manifold
with corners as “spacetime”. However, even if it is only “space”, this cobordism
can be though of as giving a graph, where the circles represent the boundary in 2D
“space” around some system—the “removed” portions of space are the graph. We
can think of the edges as particles—by which we only mean some bit of matter.
A “fundamental” particle is then an irreducible state on it. This corresponds, as
we remarked earlier, to a choice of a pair ([g], ρ) consisting of a conjugacy class
[g] of G and representation ρ of G on some vector space. Conjugacy classes of
rotation or Lorentz groups are “mass shells”, corresponding to the mass of the
particle. Representations of G, at least for SU(2) and similar groups, are labelled
by “spins”. These determine how a particle interacts with gravity. This is precisely
what the Ponzano-Regge model describes: a network of edges labelled with just
this data, and with vertex amplitudes at the intersections.

So our extended TQFT gives “particles”—boundaries in space - labelled by a
representation of a certain group. Our example was derived from a finite group,
but if G = SU(2) the label is a mass and spin) moving on a background described
by Ponzano-Regge quantum gravity (see work by, for example, Freidel, Livine, and
Louapré [40] [41][39], discussing the Ponzano-Regge model coupled to matter, by
Noui [74], and Noui and Perez [75] on 3D quantum gravity with matter).

Baez, Crans, and Wise [7] describe how conjugacy classes of gauge groups can
be construed as “particle types”: an “elementary” particle corresponds with an
irreducible 2-vector in ZG(B). This associates to a hole—whose boundary is diffeo-
morphic to the circle S1—a holonomy in a given conjugacy class [g] of G. This is
physically indistinguishable from any other corresponding to the same class. But
they are distinguishable from particles giving holonomies in some other conjugacy
class. So one says these represent different “types” of particle.

Now, we have said that for a 3D extended TQFT, the 2-vector space of states
for a circle has a basis in which each object is given by a conjugacy class of G
and representation of the stabilizer of that class. Wise [87] describes a way to
interpret such conjugacy classes as particle types in a topological gauge theory.
More generally, in any dimension, given a space with a “puncture” of codimension
2, there can be nontrivial holonomy for a connection around that puncture. In 3D,
this is a 1-D puncture, which we think of as the worldline of a point particle. In
the framework discussed in this paper, we think of the particle as a puncture in
2D space, surrounded by a 1D manifold, namely a circle. This is the manifold B
for our extended TQFT. Then the “space” from which the particle is removed is
represented as the cobordism S in our setup, and “spacetime”

Just as a conjugacy class in SU(2), as we have seen, can be interpreted as a mass
in Ponzano-Regge gravity, similarly, for other gauge groups, conjugacy classes in
the group classify “types” of matter particles which may be coupled to the field.
A state for the boundary around such a defect in our extended TQFT gives These
represent possible holonomies, up to gauge equivalence, around such a defect. These
classify the physically distinguishable particles.

The interpretation described here so far is purely kinematical, though in 4D,
where these punctures are “strings” (i.e. the punctures in space are 1-dimensional
manifolds, namely circles, and in “spacetime” are 2-dimensional, namely “world-
sheets”) the dynamics for such matter has been studied by Baez and Perez [11]. In
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terms of our extended TQFT setting, the dynamics are described by the action of
ZG on cobordisms of cobordisms.

In particular, suppose we have a cobordism with corners M : S→S′ for cobor-
disms S, S′ : B→B′, and are given specified “particle types” for the punctures in
the initial and final spaces. This amounts to choosing particular basis 2-vectors in
ZG(B) and ZG(B′).

Then on each space—cobordisms having these punctures as boundary - this
gives a vector space as the component of ZG(S) which corresponds to these basis 2-
vectors, and similarly for ZG(S′). Then the corresponding component of ZG(M) is
a linear operator between these states. The interpretation is that these components
describe the spaces of states for a field coupled to matter of the specified type, and
the linear operator which gives its time evolution. This is found, as we saw in (172),
is given by a certain “sum over histories”, where each history is a connection on
the “spacetime” M . The topology of the punctures in M can be thought of as a
Feynman graph for interactions of the matter which is the source of the field.

One should carefully note that to take this interpretation in terms of “histories”
and “spacetime” literally requires a noncompact gauge group G such as Loretz
groups SO(2, 1), SO(3, 1), or their double covers SL(2,R) and SL(2,C) respec-
tively. We expect that it would be more difficult to make these concepts precise for
noncompact gauge groups.

8.3. Further Prospects. The relationship between the extended TQFT’s dis-
cussed here and BF theory leads one to ask about the relations between this ap-
proach and other ways of looking at BF theory which have already been studied.
One of these which is particularly relevant involves so-called spin foam models. A
self-contained description of such models for BF theory and quantum gravity by
Baez [4]. Spin foam models are a generalization of the spin networks of Penrose
[76].

A spin network is a network in the sense of a graph—a collection of nodes, con-
nected by edges. In a spin network, the edges are labelled by spins—representations
of SU(2), which are labelled by half-integers. The vertices by intertwining operators—
that is, morphisms in the category of representations of SU(2) taking some tensor
product of irreducible representations to some other such tensor product. These
are taken to be a representation of a “combinatorial spacetime” in which the nodes
represent events, and the edges give information about distance between events. In
particular, the attitude is that this is the only information about distances within
this combinatorial model of spacetime.

The idea behind spin foam models is to view spin networks as describing config-
urations for the geometry of space. Then a spin foam is a morphism between spin
networks. In fact, it is a structure which contains spin networks as start and end
states in much the same way that an n-dimensional cobordism has (n−1)-manifolds
as source and targets. A spin foam is a complex vertices, edges, and faces, with
group representations labelling faces, and intertwining operators labelling edges.
So, in particular, a generic codimension-1 cross-section of a spin foam

The expected link to the present work is a generalization of the FHK construction
described in Section 2.3. In that case, one develops a TQFT by using triangulations
of the manifolds and cobordisms on which the TQFT is to define Hilbert spaces and
linear maps. We saw, as illustrated in Figure 6, that there is a network dual to this
triangulation. To the edges in this network one assigns copies of a certain algebra,
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namely Z(C[G]), and to the nodes one assigns a multiplication operator. As de-
scribed in Section 2.4, the coherence laws satisfied by these operators are described
by tetrahedrons. These are the Pachner moves in 2-D: attaching a tetrahedron to a
triangulation along one, two, or three triangular faces gives a move by replacing the
attached faces with the remaning faces of the tetrahedron. The way of assigning
an operator to a vertex of the dual to a triangulation must have the property that
it is invariant under such moves.

We have categorified this picture in order to increase the codimension of the
theory - that is, the difference in dimension between the basic manifolds and the
highest-dimensional cobordisms. So there should be a categorified equivalent of the
FHK construction, in which we begin with triangulated manifolds and cobordisms.
In categorifying, we replace the equations given by the Pachner moves with 2-
morphisms. Each move gives a 2-morphism between a pair of morphisms in 2Vect,
corresponding to a tetrahedron thought of as a cobordism connecting two parts of
its boundary. Any cobordism can be built of such units, attached together in some
triangulation:

and

Figure 17. Tetrahedra Assigned 2-Morphisms

These obey coherence laws (equations) given by the 2-3 and 1-4 Pachner moves:

=

=

Figure 18. Coherence Rules as Pachner Moves

As in 2D, where the algebra assigned by the FHK construction to edges is
Z(C[G]), the categorified version should assigne Z(Vect[G]), which corresponds
to our assignment to a circle of equivariant Vect-presheaves on G. Assigning these
to edges reproduces the Ponzano-Regge model when G = SU(2), since the irre-
ducible objects in this category are, as we have seen, precisely labelled by mass and
spin. Analogous results hold for other G, giving different field theories. But notice
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that this is different from the way we recovered the Ponzano-Regge model above:
now we are assigning this data to edges of a triangulation, not a boundary of a
“worldline”. The relations between these two pictures are close, but more than we
can go into in detail here.

However, it is enough to observe that there is a close relation between the ex-
tended TQFT we have developed and state-sum (i.e. spin-network and spin-foam)
models for BF theory, and 3D quantum gravity. So one avenue for further explo-
ration is to see how the framework described here can be extended to incorporate
other theories described by such state sum models.

Our basic result involved the construction of an extended TQFT as a weak
2-functor for any finite group G. In Section 8.1, we discussed the possibility of
extending the construction to the case where G is a Lie group, and in particular,
indicated that this is expected to be more natural when G is a compact Lie group.
Of course, noncompact groups are also of interest - for example, the Lorentz groups.
But there are other directions in which to generalize this. We briefly consider two
possibilities here: categorical groups (also known as 2-groups), and quantum groups
(by which we mean quasitriangular Hopf algebras).

An extension of the Dijkgraaf-Witten theory to categorical groups is described
by Martins and Porter [70]. A categorical group, also known as a 2-group, is a
category object in the category Grp of groups. That is, it is a structure having a
group of objects and a group of morphisms, satisfying the usual category axioms
expressed in terms of morphisms within Grp. Any group G is an example of a
2-group, where the group of objects is trivial : this is in fact how we have been
thinking of the gauge group G throughout this paper. But there are many other
examples of 2-groups, including, importantly for us, 2-groups which arise from
semidirect products of groups H ⋊G. In this case, the group of objects is G and
whose group of morphisms is H ⋊ G: the group of automorphisms of any given
object is isomorphic to H . Such a 2-group is called an automorphic 2-group.

The category of 2-groups can be shown to be equivalent to the category of crossed
modules, a concept due to Brown and Spencer [19]. A crossed module consists of a
tuple (G,H, t, α), where G and H are groups, t : H→G is a homomorphism, and
α : G→Aut(H) is an action of G onH , such that t and α satisfy some compatibility
conditions, which turn out to be equivalent to the category axioms in the 2-group
described above. The Poincare 2-group, introduced by Baez [5], is an example of
an automorphic 2-group. It has been a subject of interest as a source of a new class
of spin foam models, first suggested by Crane and Sheppeard [25]. Such models are
based on the representation theory of 2-groups, which is 2-categorical in nature,
since one must consider representations, intertwiners between representations, and
2-intertwiners between intertwiners, which form a 2-category. A spin foam model
based on a 2-group uses these to label faces, edges, and vertices respectively.

The most evident relation of 2-groups to the sort of extended TQFT’s we have
been discussing is related to gauge theory. The role of the group G in constructing
the weak 2-functor ZG was through the groupoid of connections on G-bundles on
a space X . This is [Π1(X), G], the category of functors from the fundamental
groupoid of X into G thought of as a category with one object. One might suppose
that the natural extension would be to take G to be a 2-group, with a group of
objects, and take functors from Π1(X) into this.
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This could be done, but perhaps a better approach is in the form of higher
gauge theory. Discussion of higher gauge theory can be found in work by Baez and
Schreiber [12] and Bartels [14]. The principle is that one should assign data from
a 2-group to both paths and homotopies of paths, so what one uses is not Π1(X),
but Π2(X), the fundamental 2-groupoid of X . This is a 2-category whose objects
are points in X , morphisms are paths, and 2-morphisms are homotopy classes of
homotopies of paths. It should be clear that this encodes information not only about
the first homotopy group of a space (as does the fundamental group), but also the
second homotopy group. In higher gauge theory one studies, in this case, flat “2-
connections” (or more generally n-connections), which are seen as 2-functors from
Π2(X) to a 2-group. In 3D, we have discussed how an extended TQFT based on a
Lie group could possibly describe the evolution of point-particles along worldlines
in spacetime. A categorified form of this based on 2-connections could be of interest
in 4D, where one could study the behaviour of “strings” as well as point particles
(see, for instance, Baez and Perez [11]).

Having begin by categorifying the standard definition of a TQFT, one could then
hope to continue the process and find an infinite “tower” of theories, each having
one more codimension than the last.

The last possible direction of generalization from our extended TQFT based on
a finite group would involve quantum groups. Whereas moving to 2-groups involves
“categorifying” the concept of a group, moving to quantum groups, as the name
suggests, involves “quantizing”. Neither procedure is, in general, a well defined
operation, but particular examples are understood. In particular, we could try
to generalize from finite groups to “finite quantum groups”, by which we mean
finite-dimensional quasitriangular Hopf algebras.

The idea behind quantum groups is described by Shahn Majid [68] and also
notably by Ross Street [81]. The idea provides a way to speak of deforming topo-
logical groups, although there is no way of smoothly deforming the group action
of a topological group to a family of other such groups. Instead, one works in a
larger category, of “quantum” groups, of which usual groups correspond to special
cases. This is done using Gelfand duality, which relates commutative algebra and
topological spaces. Specifically, it gives an equivalence saying that each commuta-
tive C⋆-algebra is the algebra C(X) of continuous complex functions on a compact
Hausdorff space X .

Continuous functions f : X→Y give algebra homomorphismsC(f) : C(Y )→C(X),
so that if X is a group as well as a space, the C⋆-algebra C(X) gets a comulti-
plication C(·) : C(X)→C(X) ⊗ C(X), counit C(1) : C(X)→C and involution
C(−1) : C(X)→C(X). Since these come from operations on a group, they, along
with the (pointwise) multiplication, unit, and inverse in C(X), satisfy certain ax-
ioms, and relations. The axioms for a Hopf algebra generalize these. In particular,
they require that the multiplication be associative, but not necessarily commuta-
tive. A quasitriangular, or “braided” Hopf algebra H has a distinguished element
γ, thought of as the image of 1⊗ 1 under a “switch” operation H ⊗H→H ⊗H .
These Hopf algebras are what are called “quantum groups”.

We will not attempt a full explanation of quantum groups here, though see the
above references for full details). For our purposes, the interesting point is that the
Hopf algebras coming from Lie groups G as C(G) can be deformed to noncommu-
tative and non-cocommutative quantum groups, with a parameter q which is a unit



98 JEFFREY COLIN MORTON

complex number. Given elements x and y, the deformation replaces the operations
such as multiplication by new ones, given as power series in q. When q is a complex
root of unity, this has particularly good properties.

In particular, we expected to recover the Ponzano-Regge model of 3D quantum
gravity, based on SU(2), as an extended TQFT. Now, the Turaev-Viro model (see
[85] and [36]) is based on the q-deformed quantum groups SU(2)q, and in some
respects is more convenient than the Ponzano-Regge model. In particular, there
are infinitely many representations of SU(2), but only finitely many of SU(2)q

when q is an nth root of unity (specifically, n − 1 of them). This gives better
convergent properties when summing over representations. In general, spin foam
models involving quantum groups sometimes have such good finiteness properties.

As a first effort to generalize from our situation of an extended TQFT based on
a finite group, we may try to develop an extended TQFT from the corresponding
class of quantum groups - namely, finite dimensional quasitriangular Hopf algebras.

Finally, it should be possible to combine our different directions of generalization.
For example, Crane and Yetter [27] discuss generally a similar family of algebraic
and higher-algebraic structures which give rise to TQFTs in various dimensions. In
4D, the relevant structure is a Hopf category - a categorified equivalent of a Hopf
algebra. Marco Mackaay [65] shows very explicitly how to construct invariants of
4-manifolds from certain kinds of 2-categories by means of the sort of state-sum
model which we have been discussing. It would be useful to study how much of
this can be described in the “geometric” style which we have examined here in the
form of groupoids of connections.

All of these directions suggest ways in which our results could be expanded
further by future investigation.

Appendix A. Internal Bicategories in Bicat

We rely on the notion of a bicategory internal to Bicat in our discussion of
Verity double bicategories in Chapter 4, and thus in the development of the Verity
double bicategory nCob2 in Chapter 5. Here we present a more precise definition
of this concept, and in Lemmas 6 and 7 we use it to show that examples having
properties like those of 2Cosp(C)0 (definition 6) give “double bicategories” in the
sense of Verity. These lemmas were used in the proofs of Theorems 2 and 3.

To begin with, we remark that the theory of bicategories, Th(Bicat) is more
complicated than that for categories. However as with Th(Cat), it will be a cate-
gory with objects Obj, Mor and 2Mor, and having all equalizers and pullbacks. To
our knowledge, a model of Th(Bicat) in Bicat has not been explicitly described
as such before. We could treat Obj as a horizontal bicategory, and the objects
of Obj, Mor and 2Mor as forming a vertical bicategory, but we note that dia-
grammatic representation of, for instance, 2-morphisms in 2Mor would require a
4-dimensional diagram element. The comparison can be seen by contrasting tables
1 and 2.

The axioms satisfied by such a structure are rather more unwieldy than either
a bicategory or a double category, but they provide some order to the axioms for
a Verity double bicategory, as shown in Definition 5. We note that, although that
definition is fairly elaborate, it is simpler than would be a similarly elementary
description of a double bicategory.
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In particular, where there are compatibility conditions involving equations in this
definition, such a structure would have only isomorphisms, themselves satisfying
additional coherence laws. In particular, in Verity double bicategories, the action
of 2-morphisms on squares is described by strict equations, rather than being given
by a definite isomorphism.

Similarly, it is possible (see [86] sec. 1.4) to define categories CylH (respectively,
CylV) of cylinders whose objects are squares, and maps are pairs of vertical (re-
spectively, horizontal) 2-morphisms joining the vertical (resp. horizontal) source
and targets of pairs of squares which share the other two sides (this is shown in
Table 2, in Section A.3: the cylinders are “thin” versions of higher morphisms ap-
pearing there). These are plain categories, with strict associativity and unit laws.
These conditions would be weakened in a double bicategory (in which maps would
include not just pairs of 2-morphisms, but also a 3-dimensional interior of the cylin-
der, which is a morphism in 2 Mor, or 2-morphism in Mor, satisfying properties only
up to a 4-dimensional 2-morphism in 2 Mor).

We start to see all this by describing how to obtain a double bicategory.

A.1. The Theory of Bicategories. We described in Section 3.4 how a double
category may be seen as a category internal to Cat. To put it another way, it a
model of Th(Cat), the theory of categories, in Cat, which is a limit-preserving
functor from Th(Cat) into Cat. We did not make a special point of the fact, but
this is a strict model. A weak model would satisfy the category axioms such as
composition only up to a 2-morphism in Cat, namely up to natural transformation.
So, for instance, the pullback (33) would be a weak pullback, so that instead of
satisfying t◦ c1 = s◦ c2, there would only be a natural transformation relating t◦ c1
and s ◦ c2. Such a weak model is the most general kind of model available in Cat,
but double categories arise as strict models.

So here we note that we are thinking of Bicat as a mere category, and that
we are speaking of strict internal bicategories. In particular, the most natural
structure for Bicat is that of a tricategory: it has objects which are bicategories,
morphisms which are weak 2-functors between bicategories, 2-morphisms which are
natural transformations between such weak 2-functors, and 3-morphisms which are
“modifications” of such transformations. Indeed, Bicat is the standard example of
a tricategory, just as Cat is the standard example of a bicategory. But we ignore
the tricategorical structure for our purposes.

So as with double categories, we only consider strict models of the theory of
bicategories, Th(Bicat) in Bicat. That is, functors from the category Th(Bicat)
into Bicat (seen as a category). Equations in a model are mapped to equations
(not isomorphisms) in Bicat. We call these models double bicategories.

Before we can say explicitly what this means, we must describe Th(Bicat) as
we did for Th(Cat) in Section 3.4.

Definition 24. The theory of bicategories is the category (with finite limits) Th(Bicat)
given by the following data:

• Objects Ob, Mor, 2Mor
• Morphisms s, t : Ob→Mor and s, t : Mor→ 2Mor
• composition maps ◦ : MPairs→Mor and · : BPairs→2Mor, satisfying

the interchange law (19), where MPairs = Mor×Ob Mor and BPairs =
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2Mor×Mor 2Mor are equalizers of diagrams of the form:

(206) Mor
t

""E
EE

EE
EE

E

MPairs
i // Mor2

π1

;;wwwwwwww

π2

##G
GGGGGGG Ob

Mor

s

<<zzzzzzzz

and similarly for opnameBPairs.
• the associator map a : Triples→2Mor, where Triples = ×Ob Mor×Ob Mor

is the equalizer of a similar diagram for involving Mor3, such that a satisfies
s(a(f, g, h)) = (f ◦ g) ◦ h and t(a(f, g, h)) = f ◦ (g ◦ h)
• unitors l, r : Ob→Mor with s ◦ l = t ◦ l = idOb and s ◦ r = t ◦ r = idOb

This data is subject to the conditions that the associator is subject to the Pentagon
identity, and the unitors obey certain unitor laws.

Remark 17. The Pentagon identity is shown in (23) for a model of Th(Bicat)
in Sets), where we can specify elements of Mor, but the formal relations—that
the composites on each side of the diagram are equal—hold in general. These are
built from composable quadruples of morphisms and composition as indicated in
the labels. Similar remarks apply to the unitor laws shown in (24).

So we have the following:

Definition 25. A double bicategory consists of:

• bicategories Obj of objects, Mor of morphisms, 2Mor of 2-morphisms

• source and target maps s, t : Mor→Obj and s, t : 2Mor→Mor
• partially defined composition functors ◦ : Mor2→Mor and · : 2Mor2→2Mor,

satisfying the interchange law (19)
• partially defined associator a : Mor3→2Mor with s(a(f, g, h)) = (f ◦
g) ◦ h and t(a(f, g, h)) = f ◦ (g ◦ h)
• partially defined unitors l, r : Obj→Mor with s(l(x)) = t(l(x)) = x and
s(r(x)) = t(r(x)) = x

All the partially defined functors are defined for composable pairs or triples, for
which source and target maps coincide in the obvious ways. The associator should
satisfy the pentagon identity (23), and the unitors should satisfy the unitor laws
(24).

With this definition in mind, we recall Bénabou’s classic example of a bicategory,
that of spans, revieweed in Section 3.3. There is an analogous example here, namely
double spans, or in our case double cospans.

A.2. The Double Cospan Example. In Section 4.3, we described a Verity dou-
ble bicategory of “double cospans”, 2Cosp(C)0. This notation is intended to sug-
gest it derives from a larger structure, 2Cosp(C), which is a double bicategory,
as we shall show shortly. It is analogous to the “profunctor-based examples” of
pseudo-double categories described by Grandis and Paré [46]. The Verity double
bicategory described above is derived from it. To see these facts, we first define
2Cosp(C) explicitly:
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Definition 26. 2Cosp(C) is a double bicategory of double cospans in C, con-
sisting of the following:

• the bicategory of objects is Obj = Cosp(C)
• the bicategory of morphisms Mor has: as objects, cospans in C; as mor-

phisms, commuting diagrams of the form 57 (in subsequent diagrams we
suppress the labels for clarity)
• as 2-morphisms, cospans of cospan maps, namely commuting diagrams of

the following shape:
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• the bicategory of 2-morphisms has:
– as objects, cospan maps in C as in (26)
– as morphisms, cospan maps of cospans:
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– as 2-morphisms, cospan maps of cospan maps:
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All composition operations are by pushout; source and target operations are the
same as those for cospans.
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Note that we could of course make the dual definition for spans, which may be
more natural (but is not what we need for the cobordism case).

Remark 18. Just as 2-morphisms in Mor and morphisms in 2Mor can be seen
as diagrams which are “products” of a cospan with a map of cospans, 2-morphisms
in 2Mor are given by diagrams which are “products” of horizontal and vertical
cospan maps. These have, in either direction, four maps of cospans, with objects
joined by maps of cospans. Composition again is by pushout in composable pairs
of diagrams.

The next lemma shows how this is really an example of a double bicategory:

Lemma 6. For any category C with pushouts, 2Cosp(C) forms a double bicategory.

Proof. Mor and 2Mor are bicategories since the composition functors act just like
composition in Cosp(C) in each column, and therefore satisfies the same axioms.

Since the horizontal and vertical directions are symmetric, we can construct
functors between Obj, Mor, and 2Mor with the properties of a bicategory simply
by using the same constructions that turn each into a bicategory. In particular,
the source and target maps from Mor to Obj and from 2Mor to Mor are the
obvious maps giving the ranges of the projection maps in (57). The partially de-
fined (horizontal) composition maps ◦ : Mor2→Mor and ⊗H : 2Mor2→2Mor
are defined by taking pushouts of diagrams in C, which exist for any composable
pairs of diagrams because C has pushouts. They are functorial since they are inde-
pendent of composition in the horizontal direction. The associator for composition
of morphisms is given in the pushout construction.

To see that this construction gives a double bicategory, we note that Obj, Mor,
and 2Mor as defined above are indeed bicategories. Obj, because Cosp(C) is a
bicategory. Mor and 2Mor because the morphism and 2-morphism maps from the
composition, associator, and other functors required for an double bicategory give
these the structure of bicategories as well.

Moreover, the composition functors satisfy the properties of a bicategory for
just the same reason that composition of cospans (and spans) does, since each of
the three maps involved are given by this construction. Thus, we have a double
bicategory. �

A.3. Decategorification. Our motivation for showing Lemma 6 is to get show
that cobordisms with corners form a special example of a Verity double bicategory
of double cospans in some suitable category C. We have described how to get a
double bicategory of such structures, so to get what we want, we need to show how
a Verity double bicategory can be a special kind of double bicategory. In particular,
we need to define conditions which allow us to speak of the action of 2-cells upon
squares. It is helpful, in trying to understand what these are, to consider a “lower
dimensional” example of a similar process.

In a double category, thought of as an internal category in Cat, we have data of
four sorts, as shown in Table 1.

That is, a double category DC has categories Obj of objects and Mor of mor-
phisms. The first column of the table shows the data of Obj: its objects are the
objects of DC; its morphisms are the vertical morphisms. The second column shows
the data of Mor: its objects are the horizontal morphisms of DC; its morphisms
are the squares of DC.
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Obj Mor

Objects •x •
f

// •

Morphisms

•

g

��
•

• //

��

•

��
• //

???? �#
F

•
Table 1. Data of a Double Category

Remark 19. The kind of “decategorification” we will want to do to obtain Verity
double bicategories has an analog in the case of double categories. Namely, there
is a condition we can impose which effectively turns the double category into a
category, where the horizontal and vertical morphisms are composable, and the
squares can be ignored. The sort of condition involved is similar to the horn-filling
conditions introduced by Ross Street [80] in his first introduction of the idea of
weak ω-categories. In that case, all morphisms correspond to simplicial sets, and a
horn filling condition is one which says that, for a given hollow simplex with just
one face (morphism) missing from the boundary, there will be a morphism to fill
that face, and a “filler” for the inside of the simplex, making the whole commute.
A restricted horn-filling condition demands that this is possible for some class of
candidate simplices.

For a double category, morphisms can be edges or squares, rather than n-
simplices, but we can define the following “filler” condition: given any pair (f, g) of
a horizontal and vertical morphism where the target object of f is the source object
of g, there will be a unique pair (h, ⋆) consisting of a unique horizontal morphism
h and unique invertible square ⋆ making the following diagram commute:

(210) x

h

��
�
�
�

f
// y

g

��
z

1z

//

???? �#
∗

z

and similarly when the source of f is the target of g. Notice that taking f or g to
be the identity in these cases implies F is the identity.

If, furthermore, there are no other interesting squares, then this double category
can be seen as just a category. In that case, the unique h can just be interpreted
as the composite of f and g and ⋆ as the process of composition. So we will use
the notation g ◦ f instead of h in this situation.

To see that this defines a composition operation, we need to observe that compo-
sition defined using these fillers agrees with the usual composition in the horizontal
or vertical categories, is associative, etc. For example, given morphisms as in the
diagram:

(211) w
f

// x
f ′

// y

g

��
z

1z

// z
1z

// z
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there are two ways to use the unique-filler principle to fill this rectangle. One way
is to first compose the pairs of horizontal morphisms on the top and bottom, then
fill the resulting square. The square we get is unique, and the morphism is denoted
g ◦ (f ′ ◦ f). The second way is to first fill the right-hand square, and then using
the unique morphism we call g ◦ f ′, we get another square on the left hand side,
which our principle allows us to fill as well. The square is unique, and the resulting
morphism is called (g ◦ f ′) ◦ f . Composing the two squares obtained this way must
give the square obtained the other way, since both make the diagram commute,
and both are unique. So we have:

(212) w

(g◦f ′)◦f

��
�
�
�

f
// x

g◦f ′

��
�
�
�

f ′

// y

g

��
z

1z

//

>>>> �#
∗

z
1z

//

???? �#
∗

z

= w

g◦(f ′◦f)

��
�
�
�

f ′◦f
// y

g

��
z

1z

//

>>>> �#
∗

z

So in fact we can “decategorify” a double category satisfying the unique filler
condition, and treat it as if it were a mere category with horizontal and vertical
morphisms equivalent. The composition between horizontal and vertical morphisms
is given by the filler: given one of each, we can find a square of the required kind,
by taking the third side to be an identity.

Remark 20. Note that our condition does not give a square for every possible
combination of morphisms which might form its sources and targets. In particular,
there must be an identity morphism—on the bottom in the example shown. If that
identity could be any morphism h, then by choosing f and g to be identities, this
would imply that every morphism must be invertible (at least weakly), since there
must then be an h−1 with h−1 ◦ h isomorphic to the identity. When a filler square
does exist, and we consider DB as a category C, the filler square indicates there
is a commuting square in C: we think of it as the identity between the composites
along the upper right and lower left.

The decategorification of a double bicategory to give a Verity double bicategory
is similar, except that whereas with a double category we were cutting down only
the squares (the lower-right quadrant of Table 1. We need to do more with a
double bicategory, since there are more sorts of data, but they fall into a similar
arrangement, as shown in Table 2.

Remark 21. This shows the data of the bicategories Obj, Mor, and 2Mor, each
of which has objects, morphisms, and 2-cells. Note that the morphisms in the three
entries in the lower right hand corner—2-cells in Mor, and morphisms and 2-cells
in 2Mor—are not 2-dimensional. The 2-cells in Mor and morphisms in 2Mor are
the three-dimensional “filling” inside the illustrated cylinders, which each have two
square faces and two bigonal faces.

The 2-cells in 2Mor should be drawn 4-dimensionally. The picture illustrated
can be thought of as taking both square faces of one cylinder P1 to those of another,
P2, by means of two other cylinders (S1 and S2, say), in such a way that P1 and
P2 share their bigonal faces. This description works whether we consider the Pi

to be horizontal and the Sj vertical, or vice versa. These describe the “frame” of
this sort of morphism: the “filling” is the 4-dimensional track taking P1 to P2, or
equivalently, S1 to S2 (just as a square in a double category can be read horizontally
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Obj Mor 2Mor

Objects •x •
f

// •

•
��

?? •α
��

Morphisms

•

g

��
•

• //

��

•

��
• //

???? �#
F

•

•

����|� P1

��

��

?? •

��
•

��

��u _ I

?? •��
�
�
�
�

2-Cells

•

~~  
•

α
ks

•

����|� P2

~~  

// •

~~  

	�
5

• // •

ks ks _ __ _

•

����

''
77 •

����

�
�
��
$
)
/

⇚T

•
''m h d _ Z V Q
77 •

ks

��

ks _ __ _

��
�
�
�
�

Table 2. The data of a double bicategory

or vertically). Not all relevant parts of the diagram have been labelled here, for
clarity.

Next we want to describe a condition similar to the one we gave which made it
possible to think of a double category as a category. In that case, we got a condition
which effectively allowed us to treat any square as an identity, so that we only had
objects and morphisms. Here, we want a condition which lets us throw away the
three entries of table 2 in the bottom right. This condition, when satisfied, should
allow us to treat a double bicategory as a Verity double bicategory. It comes in two
parts:

Definition 27. We say that a double bicategory satisfies the vertical action con-

dition if, for any morphism M1 ∈ Mor and 2-morphism α ∈ Obj such that
s(M1) = t(α), there is a morphism M2 ∈ Mor and 2-morphism P ∈ Mor such
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that P fills the “pillow diagram”:

(213) x //

��

��
y

��

x′ //

???? �#
M1

y′

α
��

→
P

x //

��

y

��

x′ //

???? �#
M2

y′

where M2 is the back face of this diagram, and the 2-morphism in Obj at the bottom
is the identity.

An double bicategory satisfies the horizontal action condition if for any mor-
phism M1 ∈ Mor and object α in 2Mor with s(M1) = t(α there is a morphism
M2 ∈Mor and morphism P ∈ 2Mor such that P fill the pillow diagram which is
the same as (213) turned sideways.

Here, M2 is the square which will eventually be named M1 ⋆V α when we define
an action of 2-cells on squares.

Remark 22. One can easily this condition is analogous to our filler condition
(210) in a double category by turning the diagram (213) on its side. What the
diagram says is that when we have a square with two bigons—the top one arbitrary
and the bottom one the identity—there is another square M2 (the back face of a
pillow diagram) and a filler 2-morphism P ∈ 2Mor which fills the diagram. If one
imagines turning this diagram on its side and viewing it obliquely, one sees precisely
(210), as a dimension has been suppressed. What is a square in (210) is a cylinder
(2-morphism in 2Mor); the roles of both squares and bigons in (213) are played
by arrows in (210); arrows in (213) become pointlike objects in (210).

However, to get the compatibility between horizontal and vertical actions, we
need something more than this. In particular, since these involve both horizontal
and vertical cylinders (3-dimensional morphisms in the general sense), the compat-
ibility condition must correspond to the 4-dimensional 2-cells in 2Mor, shown in
the lower right corner of Table 2.

To draw necessary condition is difficult, since the necessary diagram is four-
dimensional, but we can describe it as follows:

Definition 28. We say a double bicategory satisfies the action compatibility

condition if the following holds. Suppose we are given

• a morphism F ∈Mor
• an object α ∈ 2Mor whose target in Mor is a source of F
• a 2-cell β ∈ Obj whose target morphism is a source of F
• an invertible morphism P1 ∈ 2Mor with F as source, and the objects α

and id in 2Mor as source and target
• an invertible 2-cell P2 ∈Mor with F as source, and the 2-cells β and id in

Mor as source and target

where P1 and P2 have, as targets, morphisms in Mor we call α ⋆ F and β ⋆ F
respectively. Then there is a unique morphism F̂ in Mor and 2-cell T in 2Mor
having all of the above as sources and targets.
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Geometrically, we can think of the unique 2-cell in 2Mor as resembling the
structure in the bottom right corner of Table 2. This can be seen as taking one
horizontal cylinder to another in a way that fixes the (vertical) bigons on its sides,
by means of a translation which acts on the front and back faces with a pair of
vertical cylinders (which share the top and bottom bigonal faces). Alternatively, it
can be seen as taking one vertical cylinder to another, acting on the faces with a
pair of horizontal cylinders. In either case, the cylinders involved in the translation
act on the faces, but the four-dimensional interior, T , acts on the original cylinder
to give another. The simplest interpretation of this condition is that it is precisely
the condition needed to give the compatibility condition (49).

Remark 23. Notice that the two conditions given imply the existence of unique
data of three different sorts in our double bicategory. If these are the only data
of these kinds, we can effectively omit them (since it suffices to know information
about their sources and targets. This omission is part of a decategorification of the
same kind we saw for the double category DC.

In particular, we use the above conditions to show the following:

Lemma 7. Suppose D is a double bicategory which has at most a unique morphism
or 2-morphisms in 2Mor, and at most a unique 2-morphism in Mor, having any
specified sources and targets; and D satisfies the horizontal and vertical action
conditions and the action compatibility condition; then D gives a Verity double
bicategory in the sense of Verity.

Proof. D consists of bicategories (Obj,Mor,2Mor) together with all required
maps (three kinds of source and target maps, two kinds of identity, three partially-
defined compositions, left and right unitors, and the associator), satisfying the
usual properties. To begin with, we describe how the elements of a Verity double
bicategory V (definition 5) arise from this.

The horizontal bicategory Hor of V is simply Obj. The vertical bicategory Ver
consists of the objects of each of Obj, Mor, and 2Mor, where the required source,
target and composition maps for Ver are just the object maps from those for D,
which are all functors. We next check that this is a bicategory.

The source and target maps for Ver satisfy all the usual rules for a bicategory
since the corresponding functors in D do. Similarly, the composition maps satisfy
(20), (21) and (22) up to natural isomorphisms: they are just object maps of func-
tors which satisfy corresponding conditions. We next illustrate this for composition.

In D, there is an associator 2-natural transformation. That is, a partially defined
weak 2-functor α : Mor3 → 2Mor satisfying the pentagon identity (strictly, since
we are considering a strict model of the theory of bicategories). Among the data
for α are the object maps, which give the maps for the associator in Ver. Since
the associator 2-natural transformation satisfies the pentagon identity, so do these
object maps. The other properties are shown similarly, so that Ver is a bicategory.

Next, we declare that the squares of V are the morphisms of Mor. Their vertical
source and target maps are the morphism maps from the source and target functors
from Mor to Obj. Their horizontal source and target maps are the internal ones
in Mor. These satisfy equations (39) because the source and target maps of D
are functors (in our special example of cospans, this amounts to the fact that (57)
commutes).
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The horizontal composition of squares (41) is just the composition of mor-
phisms in Mor. Now, by assumption, Mor is a bicategory with at most unique
2-morphisms having any given source and target. If we declare these are identi-
ties (that is, identify their source and target morphisms), we get that horizontal
composition is exactly associative and has exact identities.

The vertical composition of squares (40) is given by the morphism maps for the
partially defined functor ◦ for Mor, and so composition here satisfies the axioms
for a bicategory. In particular, it has an associator and a unitor: but these must
be morphisms in 2Mor since we take the morphism maps from the associator and
unitor functors (and the theory of bicategories says that these give 2-morphisms).
But again, we can declare that there are only identity morphisms in 2Mor, and
this composition is exactly associative.

The interchange rule (42) follows again from functoriality of the composition
functors.

The action of the 2-morphisms (bigons) on squares is guaranteed by the hori-
zontal and vertical action conditions. In particular, by composition of in Mor or
2Mor, we guarantee the existence of the categories of horizontal and vertical cylin-
ders CylH and CylV, respectively. These come from the 2-morphisms in Mor or
morphisms in 2Mor respectively which those conditions demand must exist. Tak-
ing these to be identities, the cylinders consist of commuting cylindrical diagrams
with two bigons and two squares.

In the case where one bigon is the identity, and the other is any bigon α, the
conditions guarantee the existence of a cylinder, which we have declared to be the
identity. This defines the effect of the action of α on the square whose source is the
target of α. If this square is F , we denote the other square α ⋆H F or α ⋆V F as
appropriate.

The condition (47) guaranteeing independence of the horizontal and vertical
actions follows from the action compatibility condition. For suppose we have a
square F whose horizontal and vertical source arrows are the targets of 2-cells α
and β, and attach to its opposite faces two identity 2-cells. Then the horizontal
and vertical action conditions mean that there will be a square α⋆H F and a square
β ⋆V F ). Then the action compatibility condition applies (the Pi are the identities
we get from the action condition), and there is a morphism in Mor, namely a
square in V and a 2-cell T ∈ 2Mor. Consider the remaining face, which the action
condition suggests we call α ⋆H (β ⋆V F ) or β ⋆V (α ⋆H F ), depending on the order
in which we apply them. The compatibility condition says that there is a unique
square which fills this spot so the two must be equal.

Now suppose we have three composable squares—that is, morphisms F , G, and
H in Mor, which are composable along shared source and target objects in Mor.
The associator functor has an object map, giving objects in 2Mor at the “top” and
“bottom” of the squares. It also has a morphism map, giving morphisms in 2Mor.
But by assumption there is only a unique such map between , these associators must
be the unique morphism in 2Mor with source (H ◦G) ◦ F and target H ◦ (G ◦ F ).
Then by the vertical action condition, we have a filler 2-morphism in Mor for the
action on the composite square by the top associator, and then, taking the result
and composing with the bottom associator, we get another filler. This must be the
unique map between the two composites—which is the identity, since they have the
same sources and targets. So we get a commuting cylinder. Composing squares
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along source and target morphisms in Obj works the same way by a symmetric
argument.

The condition (51) is similar—the unitor functor will give the unique morphism
in 2Mor, and the action compatibility condition gives the commuting cylinder for
unitors on the composite of squares.

So from any such double bicategory we get a Verity double bicategory. �

Remark 24. It is interesting to note how these arguments apply to the case when
we are looking at constructions in 2Cosp(C), as will be the case in nCob.

In particular, the interchange rules hold because the middle objects in the four
squares being composed form the vertices of a new square. The pushouts in the
vertical and horizontal direction form the middle objects of vertical and horizontal
cospans over these. The interchange law means that the pushout (in the horizontal
direction) of the objects from the vertical cospans is in the same isomorphism class
as the pushout (in the vertical direction) of the objects from the horizontal cospans.
This is true because of the universal property of the pushout.

The horizontal and vertical 2-morphisms are maps of cospans, and act on the
squares by composition of morphisms in C: given a squareM with four maps Pi and
Πi to the edges as in (57); and a morphism of cospans on any edge (for definiteness,

say the top), where the C-morphism in the middle is S
f
→ S̃. Then the composite

f ◦ P1 : M→ S̃ is a source (or target) map to the cospan X
ι1→ S̃

ι2←Y . The result
is again a square. In particular, composition of internal maps in horizontal and
vertical morphism of cospans with the projections in a square are independent.
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