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Definition

A Topological Quantum Field Theory is a monoidal functor:

Z : nCob→ Vect

An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→ 2Vect

where nCob2 has

Objects: (n − 2)-dimensional manifolds

Morphisms: (n − 1)-dimensional cobordisms (manifolds with
boundary, with ∂M a union of source and target objects)

2-Morphisms: n-dimensional cobordisms with corners

We’ll construct an ETQFT by factoring through a 2-category Span(Gpd),
then applying some universal process.
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Definition (Part 1)

The bicategory Span2(Gpd) has:

Objects: Groupoids

Morphisms: Spans of groupoids:
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Definition (Part 2)

The 2-morphisms of Span2(Gpd) are spans of span maps, commuting up
to 2-cells of Gpd:

X
s

~~~~~~~~~~
t

  
AAAAAAAA

A Y //oo

σ

OO

τ

��

B

X ′
s′

``@@@@@@@@ t′

>>~~~~~~~~

Composition is by weak pullback taken up to isomorphism.

Theorem

There is a monoidal structure on Span2(Gpd) induced by the product in
Gpd, with monoidal unit 1.

(Note: Roughly, Span2(C) will be the universal 2-category containing C in
which morphisms have ambidextrous adjoints.)
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Cobordisms can be seen as cospans of manifolds, with inclusions:

S

A
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A cobordism between two cobordisms is a cospan of cospan maps:
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(Note there are complications due to the fact that nCob2 is a cubical
weak 2-category.)
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Cobordisms in nCob2 actually live in Span2(ManCorn), as double cospans
(here n = 3):

nCob2 Span2(ManCorn)
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These form a “double bicategory”, which induces a bicategory since
horizontal and vertical morphisms are composable.
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For finite gauge group G , we get a functor:

AG : nCob2 → Span(Gpd)

A flat G -connection on a manifold M is an object in

AG (B) = hom(Π1(M),G )

Gauge transformations are natural transformations between these (giving a
group element at each point).

Definition

Moduli space for gauge theory, for (finite) gauge group G . Given M, the
groupoid AG (M) = Fun(π1(M),G ) has:

Objects: Flat connections on M (functors)

Morphisms Gauge transformations (natural transformations)

(“Secretly” the groupoid is representing a stack. This is a standard
situation for moduli spaces supporting symmetries.)
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A connection on the cobordism S : X → Y in nCob2 can be pulled back
along boundary inclusions by (iX )? and (iY )?, hence there is a span of the
groupoids of flat connections:

AG (S)
(iX )∗

zzttttttttt
(iY )∗

%%JJJJJJJJJ

AG (X ) AG (Y )

Theorem

AG (−) defines a contravariant functor ManCorn→Gpd), and a covariant
functor nCob2→Span(Gpd).

Think of AG (S) as a space (stack) of histories; intuitively s and t pick the
starting and terminating configuration in A and B - compatible with gauge
symmetry.
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Goal: Using the induced 2-functor AG (−) : nCob2→Span2(Gpd), get an
ETQFT ZG : nCob2→ 2Vect.

Theorem

There is a 2-functor (“2-linearization”):

Λ : Span2(Gpd)→ 2Vect

Where, recall:

Definition

2Vect is the 2-category of 2-vector spaces, which consists of:

Objects: C-linear abelian category, generated by simple objects

Morphisms: 2-linear maps: C-linear (hence abelian) functor.

2-Morphisms: Natural transformations

Finite dimensional 2-vector spaces all look like Vectk , and 2-linear maps
have a matrix representation. (Analogous examples occur for infinite
dimensional 2-vector spaces).
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Lemma

If B is an essentially finite groupoid, the functor category
Λ(B) = Rep(B) := [B,Vect] is a KV 2-vector space.

The generators of [B,Vect] are irreducible reps - labeled by ([b],V ),
where [b] ∈ B and V an irreducible rep of Aut(b).

Theorem

If X and B are essentially finite groupoids, a functor f : X→B gives two
2-linear maps:

f ∗ : Λ(B)→Λ(X)

with f ∗F = F ◦ f and (the restricted representation along f )

f∗ : Λ(X)→Λ(B)

the induced representation of F along f . Furthermore, f∗ is the two-sided
adjoint to f ∗.
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In fact, the LEFT adjoint map f∗ acts by:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

This is a (left) Kan extension of the functor F along f .

There is also a RIGHT adjoint (right Kan extension):

f!(F )(b) ∼=
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))
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There is the canonical Nakayama isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map (which uses a modified group average in
each factor):

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification we get that f ∗ and f∗ are ambidextrous adjoints.
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Call the adjunctions in which f∗ is left or right adjoint to f ∗ the left and
right adjunctions respectively. We want to use the counit for the right
adjunction, the evaluation map:

ηR(G )(x) : v 7→
⊕

y |f (y)∼=x

(g 7→ g(v))

and the unit for the left adjunction, which is determined by the action:

εL(G )(x) :
⊕

[y ]|f (y)∼=x

gy ⊗ v 7→
∑

[y ]|f (y)∼=x

f (gy )v

These define maps between F (x) and f∗f
∗F (x).

(Note: there are canonical inner products around which make these maps
linear adjoints.)
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Definition

Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]

Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(a) −→ Λ(B)

2-Morphisms: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

Λ(X , s, t) can be represented by the matrix with coefficients:

Λ(X , s, t)([a],V ),([b],W ) = homRep(Aut(b))(t∗ ◦ s∗(V ),W )

'
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))(s∗(V ), t∗(W ))

This is an intertwiner space for the groupoid representations. The
2-morphisms give (component-wise) linear maps between intertwiner
spaces.
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In the case where source and target are 1, there is only one basis object in
Λ(1) (the trivial representation), so the 2-linear maps are represented by a
single vector space. Then it turns out:

Theorem

Restricting to homSpan2(Gpd)(1, 1):

A
!

����������
!

��
????????
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OO

t
��

1

B

!

__???????? !

??��������

where 1 is the (terminal) groupoid with one object and one morphism, Λ
on 2-morphisms is just the degroupoidification functor D of Baez and
Dolan.
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Theorem

For any finite group G, the 2-functor

ZG = Λ ◦ AG

is an extended TQFT.

That is, a cobordism becomes:

[AG (X ),Vect]
Λ(AG (S),(iX )∗,(iY )∗)−→ [AG (Y ),Vect]

and similarly for 2-morphisms.

Corollary

ZG = Λ ◦ AG gives the Dijkgraaf-Witten model when n = 3, for closed
manifolds.
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For example, if B = S1, a G -connection g is determined by one holonomy
in G . Then G acts by gauge transformations, via the conjugation action,
so h : g→ g ′ is h ∈ G , such that g ′ = hgh−1. So:

AG (S1) ' G//G

which has:
• Objects: elements of G
• Morphisms: conjugacy relations h : g → g ′

So we have the 2-vector space of G -equivariant functors into Vect, and
thus

ZG (S1) = [AG (S1),Vect] ' Rep(G//G )

The irreducible (basis) objects of ZG (S1) are then labelled by a choice of
conjugacy class [g ] ∈ G and a representation V ∈ Rep(Stab(g)).
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Suppose S : S1 + S1→ S1 is the “pair of pants”, showing two “particles”
fusing into one.

Jeffrey C. Morton (IST) Extended TQFT by Induced Representations WIMCS TQFT 2011 18 / 37



Then we have the diagram:

(G × G )//G

∆

xxppppppppppp
m

&&LLLLLLLLLL

(G//G )2 G//G

(1)

Where the map ∆ leaves connections fixed, and acts as the diagonal on
gauge transformations; and m is the multiplication map.

Note: a state over ([g ], [g ′]) will be transported to one with nontrivial
representations over all [gg ′] for any representatives of [g ], [g ′].
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Generalization 1: ZG for G a compact Lie group (uses measured
groupoids)
For quantum mechanics, the classical configuration space S is usually not
discrete.
Minimally, (S , µ) a measure space, and L2(S , µ) is the Hilbert space for
the corresponding quantum system. Interesting cases occur when S is a
manifold and µ comes from a volume form.
Duplicating the above requires some changes:

Ambi-adjunction requires Hilb instead of Vect in infinite-dim setting

Direct sums become direct integrals - which are not (co)limits

Push-forward is not just Kan extension of functors
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Any 2-linear map T : Vectn→Vectm is naturally isomorphic to a map
acting by an m × n matrix:V1,1 . . . V1,n

...
...

Vm,1 . . . Vm,n


W1

...
Wn

 =


⊕n

i=1 V1,i ⊗Wi
...⊕n

i=1 Vm,i ⊗Wi


When the entries are finite-dimensional vector spaces, this explains why T
has a two-sided adjoint.
T ∗ is the n ×m matrix with (T ∗)i ,j = (Ti ,j)

∗, the dual of the
corresponding entry it the transpose of T . The adjoint is 2-sided because
(Vi ,j)

∗∗ ∼= Vi ,j is canonical: the category FinVect is reflexive.

This isn’t true for infinite-dimensional vector spaces, but it is for Hilbert
spaces (Hilb is reflexive). So to stay closed under composition, in
infinite-dimensions, 2-Vector spaces must be generalized to 2-Hilbert
spaces.
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Consider categories like:

Definition

If (X , µ) is a measurable space Meas(X) is the category with:

Objects: measurable fields of Hilbert spaces on (X ,M): i.e.
X -indexed families of Hilbert spaces Hx with a Hilbert space of
measurable sections (satisfying certain properties)

Morphisms: measurable fields of bounded linear maps between
Hilbert spaces, fx : Hx→Kx so that ||f || (the operator norm of f ) is
measurable.

This is the equivalent of a measurable function. Imposing that sections
and norms be L2 condition gives a categorification of L2(X , µ).
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Definition

There is a locale MX whose “open sets” are the measurable sets of X ,
and whose morphisms are inclusions up to almost everywhere. This
becomes a Grothendieck site where an “open cover” is a usual cover, up
to almost everywhere.
Then a measurable sheaf of Hilbert spaces is a sheaf of Hilbert spaces on
on MX , and these form a category MSh(X ).

Theorem (Wendt)

The category of measurable sheaves MSh(X ) is equivalent to the internal
category Hilb[Sh(X )] of Hilbert spaces in the topos Sh(X ) of (set-valued)
sheaves on MX .
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Theorem

A measurable field of Hilbert spaces on (X , µ) determines a measurable
sheaf by direct integration: given a measurable U ⊂ X , this assigns∫ ⊕

U
dµ(x)Hx

where the direct integral is a Hilbert space of sections with inner product

〈φ, ψ〉 =

∫
U

dµ(x)〈φx , ψx〉

This is the equivalent of the matrix of vector spaces for a 2-linear map. It
is still a conjecture that all suitable functors are of this form.
Question: How do such functors arise?
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Definition

A disintegration between two measure spaces consists of:

A measurable function f : (X ,M, µ)→ (Y ,N , ν)

A family (Xy ,My , µy )y∈Y where:
I Xy = f −1(y)
I My = {A ∩ Xy |A ∈M}
I µy is a measure on Xy

satisfying some obvious properties.

Theorem (Wendt)

Given a disintegration f : (X , µ)→(B, ν), there is an adjoint pair of
functors

MSh(X )
f ∗→←
f∗

MSh(Y )

We need (groupoid-)equivariant version of this theorem.
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Definition

A measurable groupoid is a groupoid internal to Msble, the category of
measurable spaces and measurable functions.

Definition

If G = (G0,G1) is a measurable groupoid, a groupoid measure on G
consists of:

A measure µ on the space of objects

A (measurable, left) Haar system: for each x ∈ G0, a measure νx on
the space of morphisms into x , t−1(x) such that

I the choice νx is measurable: for any measurable function f : G1→C,
the function

x 7→
∫
t−1(x)

f (g)dνx(g) (2)

is measurable
I the νx are left-invariant: for any g ∈ G1, and measurable f : G1→C∫

f (gh)dνs(g)(h) =

∫
f (h)dνt(g)(h) (3)
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To define Λ for measure groupoids, we again want:

Λ(G ) = Rep(G )

A representation ρ of a measure groupoid s, t : G1→G0 is defined on a
measurable field of Hilbert spaces H on G0. It gives a functor R : G→Hilb
with R(x) = Hx , the fibre at each x ∈ M, and an isomorphism R(g) for
each g : x→ y . (But not all functors are measurable representations).

Definition

Rep(G), the category of representations of G, has

Objects: Measurable representations of G

Morphisms: Intertwiners: i.e. measurable natural transformations
between functors n : ρ→ ρ′

(A natural transformation is measurable when it determines a measurable
field of linear maps over G0.)
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Theorem

A representation of G on a measurable field H of Hilbert spaces
determines an equivariant sheaf of Hilbert spaces by direct integration.

Then we hope to have the following:

Proposition

The category Rep(G ) is equivalent to the internal category Hilb[EMSh(G )]
of Hilbert spaces in the topos of equivariant measurable sheaves on MG0.

And

Proposition

Given a disintegrating functor f : G→G ′ between measure groupoids ,
there is a (bi-)adjoint pair of functors

EMSh(G )
f ∗→←
f∗

EMSh(G ′)
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Given the above, we would define Λ as before, so that a span

X

s
��~~~~~~~

t
  

AAAAAAA

G G ′

has
Λ(X , s, t) = t∗ ◦ s∗ : Λ(G ) −→ Λ(G ′)

and for a 2-cell Y : X →X ′ given by

Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

using the analog of the Nakayama isomorphism:

N :

∫ ⊕
[x]|f (x)∼=b

φx 7→
∫ ⊕

[x]|f (x)∼=b

1

vol(Aut(x))

∫
g∈Aut(b)

g ⊗ φx(g−1)
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Applying the above to ETQFT: follow the same prescription:

Example

Interesting case is G = SU(2). The topology generates measurable sets to
make SU(2) a regular Borel space, with Haar measure µ.
The (measurable) groupoid

G = ZSU(2)(S1) = SU(2)//SU(2)

gets a groupoid measure:

Measure: Ob(G) = SU(2) gets the Haar measure µ

Haar System: For g ∈ Ob(G), we always have t−1(g) ∼= SU(2),
which also gets νg = µ

(Note: vol(G//G ) = 1, as we’ve fixed normalization of µ)

We can get reps of G by integrating those indexed by ([g ],V ) for
g ∈ SU(2) and V an irrep of Stab(g) (SU(2) or U(1)).
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Cobordisms of 2 or 3 dimensions are trickier:

For connected cobordisms, all groupoids in our construction are equivalent
to ones of the form AG (X )//G .
So we can always take νx = µ, Haar measure on G . But:

There is a canonical measure on AG (B) for 2-manifold S , the
Goldman measure... but this is nontrivial!

There is no canonical measure on AG (M) for 3-manifold M!

To assign measures to AG (X ) in dimension 3 or higher, we must change
the cobordism category.
Need cobordisms to be decorated with extra data, sufficient to determine a
measure. (e.g. specified paths which determine a presentation of the
fundamental groupoid)
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The construction for Λ can also be described using:

Rep(B) 7→ Category of reps of von Neumann algebra associated to B
(including groupoid algebras)

2-linear maps represented by Hilbert bimodules, given by induction
and restriction

Natural transformations represented by bimodule maps

This relates to a conjecture (Baez, Baratin, Freidel, Wise) that
infinite-dimensional 2-Hilbert spaces are representation categories for
v.N.-algebras.
“Physically”, this describes the quantum mechanics of systems with
boundary.
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Generalization 2: Higher gauge theory - for a 2-group G, define a
3-functor ZG : nCob3→ 3Vect.
Sketch:

Definition

Fixing a 2-group G, the contravariant 2-functor

A(2)
G = 2Fun[Π2(−),G]

assigns to a manifold M the 2-groupoid A(2)
G (()M) with:

Objects: 2-functors (“2-connections”)

Morphisms: natural transformations (“gauge transformations”)

2-Morphisms: modifications (...)

(and, to smooth functions, the induced maps).
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There’s an induced map Span3(ManCorn)→Span3(2Gpd), where
Span3(−) has, as 3-morphisms, equivalence classes of diagrams shaped
like:

•

•

•

• •
•

•
ggOO

''OO

TT*********

��������

GG������

��
*********yyrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLL

eeLLLLLLLLLLLLLL

99rrrrrrrrrrrrrr

(4)

Composition is again by weak pullback. (Note that 2-morphisms and
3-morphisms of 2Gpd can appear in Span3(2Gpd) by weakening the
assumption that this commutes.)

As before, nCob3 lives in Span3(ManCorn) (cubical, but can be
intimidated into being globular if desired).
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We would like to define a 3-functor

Λ(2) : Span3(2Gpd)→ 3Vect

Then assuming Λ(2) is well-defined, we should obtain an extended TQFT
3-functor:

ZG = Λ(2) ◦ A(2)
G : nCob3→ 3Vect

For X ∈ 2Gpd, we expect to get:

Λ(2)(X ) = Rep(X ) = 2Fun(X , 2Vect)
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There should be, for each F : X →Y, an adjoint pair

F∗ : Rep(Y)→Rep(X )

and
F∗ : Rep(X )→Rep(Y)

where the induced representation functor F∗ is given by 2-Kan extension
along F .
To prove: It should be biadjoint. Moreover, to get 3-morphisms, the unit
and counit εL, ηR should themselves be biadjoint!

Eventually: One hopes this pattern will repeat with representations of
n-groupoids for all n. Must deal with slight trickiness of nVect.
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