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Why look at higher symmetries of moduli spaces?

I Quantization of a physical theory is a kind of linearization

I Classical symmetries of moduli spaces act on Hilbert spaces

I Gives representation theory of groupoids for extended field
theories (e.g. WZW model as boundary condition of
Chern-Simons, etc.)

I In higher gauge theory, “symmetry” is encoded in higher
groupoids

I Higher quantization will involve the representation theory of
these higher groupoids (relevant when extending field theories
down to higher codimension)



What is different in higher gauge theory?

I Symmetries in “1-dimensional algebra” can be global or local

I Local symmetries are expressed by groupoids (e.g. of
transport functors, in gauge theory)

I Global symmetries are expressed by group actions

I The two are related by transformation groupoids

I Transformation “groupoids” for 2-group actions are double
categories (i.e. groupoids internal to Cat)

I Functor categories are naturally 2-groupoids

I Global and local symmetry are still related

I But there are local symmetries in higher gauge theory which
are not global symmetries! (Not true in ordinary gauge theory)



Global and Local Symmetry

Symmetry is a key concept in physical theories. It can be
understood globally or locally 1. (c.f. Weinstein)
Local symmetry relations of a set X 2 can be represented as a
groupoid with:

I Objects: the elements of X

I Isomorphisms: f : x → y denoting a symmetry relation
between x and y

1Terminology conflict warning: this may clash with other standard uses of
these words. “Global symmetries” in this sense turn out to consist of the
(n-)group of local gauge transformations - later, we use strict and costrict for
this notion

2For “set”, we can, if careful, replace “object of a concrete category”, such
as Top, Man, etc.



Global symmetry involves group actions:

Definition
A group action φ on a set X is a functor F : G → Sets where the
unique object of G is sent to X . Equivalently, it is a function
F̂ : G × X → X which commutes with the multiplication
(composition) of G :

G × G × X
(1G ,F̂ )

//

(m,1X )
��

G × X

F̂
��

G × X
F̂

// X

(1)



Not all local symmetry situations come from a global one, but any
group action gives a groupoid called the transformation groupoid.

Definition
The transformation groupoid of an action of a group G on a set
X is the groupoid X//G with:

I Objects: All x ∈ X

I Morphisms: Pairs (g , x) ∈ G × X , with s(g , x) = x , and
t(g , x) = F (g , x)

I Composition: (g ′, gx) ◦ (g , x) = (g ′g , x)



Groupoids representing local symmetry need not be transformation
groupoids.

Example

I If M is a smooth manifold with an action of a Lie group G ,
take the full subgroupoid of M//G on any open neighborhood
U ⊂ M. Most are not transformation groupoids.

I Disjoint unions of transformation groupoids for different group
actions (e.g. for a disconnected space with different
symmetries on each connected component)



Groupoids of Connections
One possible approach to higher gauge theory is by transport
functors:

Definition
A (flat) G -connection is a functor

A : Π1(M)→ G

which assigns holonomies to paths in M. A gauge
transformation α : A→ A′ is a natural transformation (which
assigns αx ∈ G to each x ∈ M with

αyA(γ) = A′(γ)αx

for each path γ : x → y).

Flat connections and natural transformations form the objects and
morphisms of the groupoid of flat connections

A0M = Fun(Π1(M),G )



Proposition

If M is a connected manifold, A0M is equivalent to the
transformation groupoid of an action of a group of all gauge
transformations on the space of all connections:

Conn//Gauge ∼= Fun(Π1(M),G ) (2)

This is the statement we want to generalize to 2-groups. For
technical reasons, it is easier to give a discrete version of the
result, but morally we have:

Theorem
Given a manifold (M), and a strict 2-group G presented by the
crossed module (G ,H,B, ∂), there is an isomorphism:

Conn//Gauge ∼= Hom�(Π2(M),G) (3)



2-Groups and Crossed Modules

Goal: We want to construct an analog of C//G for an action of a
2-group.

Definition
A 2-group G is a 2-category with one object, and all morphisms
and 2-morphisms invertible. A categorical group is a group object
in Cat: a category G with ⊗ : G × G → G and an inverse map
satisfying the usual group axioms.

These are equivalent since a categorical group “is” a 2-group with
one object.



2-groups are classified by crossed modules:

Definition
A crossed module consists of (G ,H,B, ∂), where G and H are
groups, G B H is an action of G on H by automorphisms and
∂ : H → G is a homomorphism, satisfying the equations:

∂(g B η) = g∂(η)g−1 (4)

and
∂(η)B ζ = ηζη−1 (5)



Definition
The categorical group G given by (G ,H,B, ∂) has:

I Objects: G(0) = G

I Morphisms: G(1) = G × H, with source and target maps

s(g , η) = g and t(g , η) = ∂(η)g (6)

I Composition:

(∂(η)g , ζ) ◦ (g , η) = (g , ζη). (7)

That is, as a group, G(1) ∼= G n H, the semidirect product, with:

(g1, η)⊗ (g2, ζ) = (g1g2, η(g1 B ζ)) (8)



Higher Gauge Theory
Goal: Use 2-groups to generalize preceding constructions of
connections and gauge transformations.

Definition
If M is a manifold with cell decomposition D = (V ,E ,F , . . . ),
then the discrete fundamental 2-groupoid Π2(M,D) is the
2-groupoid with

I Objects: the 0-cells of V

I 1-Morphisms: Hom(x , y) consists of 1-tracks in M starting at
x ∈ V and ending at y ∈ V

I 2-Morphisms: A 2-track f : e → e ′ between two 1-tracks is
determined by a collection of faces (f1, f2, . . . , fl) in f , the
composite of a sequence of homotopies between 1-tracks,
each of the form

f ′j = (ei1 , . . . , ein)fj(ein+1 , . . . , eim) (9)

(A discrete version of points, paths, and (thin) homotopy classes of
homotopies of paths. Morally, the discretization should be
irrelevant because of Morita-invariance.)



2-Groupoid of Connections

Definition
The gauge 2-groupoid for a 2-group G on a manifold M with cell
decomposition D is:

A0((M,D),G) = HomBicat(Π2(M,D),G) (10)

the 2-functor 2-category, which has:

I Objects: 2-Functors from Π2(M) to G, called Connections

I Morphisms: Pseudonatural transformations between functors,
called Gauge Transformations

I 2-Morphisms: Modifications between pseudonatural
transformations, called Gauge Modifications

(The term “gauge modification” appears not to be in common use
yet!)



Example 1: Connection on a Circle
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Example 1: Gauge Transformation on a Circle
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Example 1: Gauge Modification on a Circle
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Example 2: Connection on a Torus
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Example 2: Gauge Transformation on a Torus
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Example 2: Gauge Modification on a Torus
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Actions of 2-Groups on Categories
Global 2-group symmetry makes sense for objects in any
bicategory:

Definition
A 2-group G acts (strictly) on an object C in a bicategory B if
there is a strict 2-functor:

Φ : G → B

whose image lies in End(C).

In the case B = Cat:

I Φ(∗) = C
I γ ∈ Mor(G) gives an endofunctor:

Φγ : C→ C (11)

I (γ, η) ∈ 2Mor(G) gives a natural transformation:

Φ(γ,η) : Φγ ⇒ Φ∂(η)γ (12)



To make sense of local 2-group symmetries, we need an internal
picture in Cat:

Definition
A strict action of a categorical group G on a category C is a
functor Φ̂ : G ×C→ C satisfying the action square diagram in Cat
(strictly):

G × G × C
⊗×IdC //

IdG×Φ̂
��

G × C

Φ̂
��

G × C
Φ̂

// C

(13)

Lemma
A strict 2-functor Φ : G → End(C) is equivalent to a strict action
functor Φ̂ : G × C→ C.



Definition
If G is a categorical group classified by the crossed module
(G ,H,B, ∂), and Φ̂ : G ×C→ C a strict action, let the notation I
denote the following:

I Given γ ∈ G(0) = G and x ∈ C(0), let

γ I x = Φγ(x) = Φ̂(γ, x) (14)

I Given γ ∈ G(0) = G and f ∈ C(1), let

γ I f = Φγ(f ) = Φ̂((γ, 1H), f ) (15)

I Given (γ, χ) ∈ G(1) = G n H and (f : x → y) ∈ C(1), let

(γ, χ) I f = Φ̂((γ, χ), f )
= Φ(γ,χ)(y) ◦ (γ I f )
= (∂(χ)γ I f ) ◦ Φ(γ,χ)(x)

(16)



Transformation Double Categories

Idea: Since 2-group actions look just like actions of group objects,
internal to Cat, we can construct the transformation groupoid in
Cat as well.
A category C (in particular, a groupoid) internal in Cat has
categories C (0) of objects and C (1) of morphisms. It is a double
category, and we interpret the data of C (0) and C (1) as:

C (0) C (1)

Objects x x f // y

Morphisms

x

g

��
z

x //

��

����|� F

y

��
z // w



C//G is a category internal in Cat:
The category of objects is C, with objects and morphisms:

x f // y

The category of morphisms is C× G, with source and target the
projection and I respectively. Its objects and morphisms can be
interpreted as the vertical arrows and squares of:

x f //

(γ,x)

��

y

((∂η)γ,y)
��

γ I x
(γ,η)If

//

,, ,,
��((γ,η),f )

(∂η)γ I y



The squares are diagonals of the naturality cubes:

x

,,YYYYYYYYYYYYYYYYYYYY

(γ,x)

��

MMMMMMMMMMMMM

MMMMMMMMMMMMM
f // y

(γ,y)

��

MMMMMMMMMMMMM

MMMMMMMMMMMMM

x

((∂η)γ,x)

��

f
// y

((∂η)γ),y)

��

γ I x

,,YYYYYYYYYYYYYYYYY

Φ(γ,η)x &&LLLLLLLLLL
γIf

//

???? �#
((γ,η),f )

γ I y
Φ(γ,η)y

&&LLLLLLLLLL

(∂η)γ I x
(∂η)γIf

// (∂η)γ I y

(Note: the cube’s faces are themselves special cases of squares
when f = Idx or η = 1H .)



Structure of Transformation Groupoid

Theorem
If G is given by a crossed module (G ,H, ∂,B), then

(C̃//G)(0) = C(0)//G , and C(1)//G ⊂ (C̃//G)(1) = C(1)//(G n H).

This lets us relate the three group actions represented by the
overloaded symbol I:

Theorem
The identity-inclusion functor

id : (C//G)(0) → (C//G)(1) (17)

factors into two inclusions:

(C̃//G)(0) ⊂ C(1)//G(0) ⊂ (C̃//G)(1) (18)



Functor Double Category

Question: How is the transformation double category related to
the functor 2-category depicted in our earlier pictures?

Definition
A pseudonatural transformation p : F ⇒ G between 2-functors
assigns a B-morphism to each A-object, and a B-2-morphism to
each A-morphism such that, for each A-morphism f : x → y , the
following square commutes up to the 2-cell filling it:

F (x)
F (f )

//

p(x)
��

������p(f )

F (y)

p(y)
��

G (x)
G(f )

// G (y)

(19)



Definition
A pseudonatural transformation p : F ⇒ G is strict if this square
commutes strictly, i.e.

p(f ) = Id (20)

and costrict if, ∀x ∈ A

F (x) = G (x) and p(x) ≡ IdF (x) (21)

The costrict transformations are denoted “ICONs” by Lack (an
acronym for “Identity-Component Oplax Natural
transformations”).



Definition
Given bi-groupoids A and B, define a double groupoid
Hom�(A,B) with:

I Objects: (strict) Functors from A to B

I Horizontal Morphisms: Costrict transformations

I Vertical Morphisms: Strict transformations

I Squares: Modifications M : s2 ◦ cF ⇒ cG ◦ s1:

F1
c1 //

sF
��

����|� M

G1

sG
��

F2 c2

// G2

(22)

Theorem
There is a 1-1 correspondence between modifications in
Hom(A,B) and squares in Hom�(A,B).



Category of 2-Group Connections

Definition (Category of Connections - Part 1)

The category of connections, Conn = Conn(G, (V ,E ,F )), has
the following:

I Objects of Conn consist of pairs of the form

{(g , h)|g : E → G , h : F → H s.t.
∏
e∈∂f

g(e) = ∂h(f )}

I Morphisms: Morphisms of Conn with a given source (g , h)
are labelled by η : E → H.



Definition (Category of Connections - Part 2)

The target of a morphism from (g , h) labelled by η is (g ′, h′) with:

g ′(e) = ∂(η(e))g(e)

and
h′(f ) = h(f )η̂(∂(f ))

The term η̂ is the total H-holonomy around the boundary of the
face f , whose edges are ei (taken in order):

η̂(∂(f )) =
∏

ej∈∂(f )

( j∏
i=1

gi
)
B ηj

?
g1 // ? //

????[c
η1

?
gn

// ?

????[c
ηn

?
g ′

1

// ? // ?
g ′
n

// ?

= ?
g1...gn // ?

????[c
η̂(f )

?
g ′

1...g
′
n

// ?

(23)



2-Group of Gauge Transformations

Definition
Given M with cell decomposition including (V ,E ,F ) as above, the
2-group of gauge transformations is Gauge = GV , which has:

I objects γ : V → G

I morphisms (γ, χ) with χ : V → H

I 2-group structure given by ∂ and B acting pointwise as in G

Claim: there is a natural action of Gauge on Conn:

Φ : Gauge→ End(Conn)



Action of Gauge on Conn

Definition (Gauge 2-Group Action - Part 1)

The action of Gauge on Conn is given by:

I An object γ : V → G of Gauge gives a functor

Φ(γ) : Conn→ Conn

which acts via “conjugation by γ”:
I on objects (g , h) ∈ Conn by:

Φ(γ)(g , h) = (ĝ , γ B h)

where
ĝ(e) = γ(s(e))−1g(e)γ(t(e))

and
(γ B h)(e) = γ(s(e1))B h(f )

I on morphisms ((g , h), η) by:

Φ(γ)((g , h), η) = ((ĝ , γ B h), η)



Definition (Gauge 2-Group Action - Part 2)

I A morphism (γ, χ) of Gauge gives a natural transformation

Φ(γ, χ) : Φ(γ)⇒ Φ(γ′) : Conn→ Conn

where γ′ = ∂(χ)γ, defined as follows: for each object
(g , h) ∈ Conn,

Φ(γ, χ)(g , h) = ((g̃ , h̃), η̃)

where
I g̃(e) = γ(s(e))−1g(e)γ(t(e))
I h̃(f ) = h(f )
I η̃(e) = γ(s(e))−1 B (χ(s(e))−1.g B χ(t(e)))

for each e ∈ E , f ∈ F .

Goal: 2-Group analog of the theorem that A0M is equivalent to a
transformation groupoid, for this action.



Main Theorem

Theorem
Given a manifold with cell decomposition, (M,D), with
D = (V ,E ,F ), and a strict 2-group G presented by the crossed
module (G ,H,B, ∂), there is an isomorphism double functor T of
double groupoids:

T : Conn//Gauge ∼= Hom�((Π2(M),D),G) (24)

(The definition of T is given on the following slides.)



Definition (Part I)

Objects: For (g , h) ∈ Conn//Gauge, define the 2-functor
T (g , h) : Π2(M)→ G by:

I On objects: T (g , h)(v) = ?,∀v ∈ V

I On morphisms: a 1-track e ∈ M(1) is a thin equivalence class
of edge paths in D. If e is represented by the sequence of
edges (e1, e2, . . . , ek), then let

T (g , h)(e) = g(e1)g(e2) . . . g(ek) (25)



Definition (Part II)

I On 2-morphisms: On each 2-track f1 ◦ · · · ◦ fn with

f ′j = (ei1 , . . . , ein)fj(ein+1 , . . . , eim) (26)

define

T (g , h)(f ′j ) = (g(ei1 . . . g(ein))h(fj)(g(ein+1), . . . , g(eim))
(27)

and by functoriality

T (g , h)(f ) = T (g , h)(f1) . . .T (g , h)(fl) (28)



Definition (Part III)

I Horizontal Gauge Transformations: A horizontal morphism

in ((g , h)
fη→(g ′, h′)) ∈ Conn//Gauge is determined by

η : E → H, where g ′ = ∂(η)g . Then define the costrict
transformation:

T (η) : T (g , h)→ T (g ′, h′) (29)

by

T (η)(e) = η(e1)η(e2) . . . η(ek) : T (g , h)(e)⇒ T (g ′, h′)(e)
(30)



Definition (Part IV)

I Vertical Gauge Transformations: A vertical morphism in
((g , h), γ) ∈ Conn//Gauge is a pair in Conn× Gauge, (so
γ : V → G ). Denote this by γ for short, and define the strict
natural transformation:

T (γ) : T (g , h)→ T (ĝ , γ B h) (31)

by T (γ)(v) = γ(v).



Definition (Part V)

I Gauge Modifications: Recall that a gauge modification is a
square in Conn//Gauge, a morphism in the morphism
category, which is determined by a pair of morphisms
(((g , h), η), (γ, χ)) ∈ Conn×Gauge. Denote this χ for short,
and define the modification

T (χ) : T (γ)T (∂(χ)η)⇒ T (η)T (Φ̂(η, χ)) (32)

or equivalently

T (χ) : T (γ)T (∂(χ)η)⇒ T (η)T (Φχ(g , h)Φ(∂χ)γ(η)) (33)

It is just defined by T (χ)(v) = χ(v).



Example 1: Connections on the Circle

A0S1 = Hom(Π2(S1),G), with:

I Objects: Functors F : Π2(S1)→ G, which are determined by
F (1) ∈ G

I Morphisms: Natural transformations n : F ⇒ F ′ determined
by γ ∈ G and η ∈ H

I 2-Morphisms: Modifications φ : n⇒ n′ determined by χ ∈ H

Theorem
There is an equivalence of 2-groupoids A0S1 ∼= G//G.



Generalization to n-Groups

This phenomenon should generalize to n-groups for n > 2. Some
straightforward conjectures:

I (k + 1)-group gauge theory should give moduli space as a
k-groupoid internal to kCat as “transformation groupoid”

I For n = 3 (k = 2) this is a “double bicategory”

I Should relate to global symmetries by a n-group action on a
n-category

I In general, a square array of morphism types

I All these have local descriptions in terms of forms on
spacetime: graded by form degree and morphism degree of
the gauge k-group

I Should be a bicomplex with compatible crossed-complex
structures in each direction (since crossed complex ∼=
k-groupoids)
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