Extended TQFT in a Bimodule 2-Category

Jeffrey C. Morton

Instituto Tecnico Superior, Lisbon

Erlangen, Germany Nov 2011 **Summary**: Describe an Extended Topological Field Theory with topological action in terms of a factorization into classical field theory and quantization functor.

Definition

An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

 $Z: \mathbf{nCob_2} \to \mathbf{2Hilb}$

where **nCob**₂ has

- **Objects**: (*n* 2)-dimensional manifolds
- Morphisms: (n-1)-dimensional cobordisms (manifolds with boundary, with ∂M a union of source and target objects)
- 2-Morphisms: *n*-dimensional cobordisms with corners

The related program of Freed, Hopkins, Lurie, Teleman aims to describe *local structure* of *n*-dimensional TQFT as a fully-extended ETQFT. That is, an *n*-functor from $nCob_n$ to **nAlg**. Their program has two parts:

- A classical field theory, valued in groupoids
- A **quantization functor**, valued in *n*-algebras (roughly, monoidal *n*-vector spaces)
- Goal: Define such an ETQFT by a factorization

$$Z_G = \Lambda \circ \mathcal{A}_0(-)$$

where

$$\mathcal{A}_0(-): \mathbf{nCob}_2 \rightarrow Span_2(\mathbf{Gpd})$$

and

$$\Lambda: \text{Span}_2(\textbf{Gpd}) \to \textbf{2Hilb}$$

Definition (Part 1)

The bicategory Span₂(**Gpd**) has:

- Objects: Groupoids
- Morphisms: Spans of groupoids:

• Composition defined by weak pullback:

Definition (Part 2)

The **2-morphisms** of *Span*₂(**Gpd**) are spans of *span maps*, commuting up to 2-cells of **Gpd**:

Composition is by weak pullback taken up to isomorphism.

Theorem

There is a monoidal structure on $Span_2(\mathbf{Gpd})$ induced by the product in \mathbf{Gpd} , with monoidal unit 1.

Spans in Physics

- Span(C) is the *universal* 2-category containing C, and for which every morphism has a (two-sided) adjoint. The fact that arrows have adjoints means that Span(C) is a †-monoidal category. This is useful to describe quantum physics. (See Abramsky and Coecke, Vicary). (Compare also "dualizable" conditions for TQFT.)
- Physically, X will represent an object of *histories* leading the system A to the system B. Maps s and t pick the starting and terminating *configurations* in A and B for a given history (in the sense internal to C). (Adjointness corresponds to *time reversal* of histories.)
- Histories should be given an *action* by a Lagrangian functional. We'll see later how to incorporate this into Span(**Gpd**).

The "classical field theory" is a (topological) gauge theory, for gauge group G. The values are in the moduli space of connections:

Definition

Given *M*, the groupoid $\mathcal{A}_0(M) = hom(\pi_1(M))/\!\!/ G$ has:

- Objects: Flat connections on M
- Morphisms Gauge transformations

This induces a 2-functor:

$$\mathcal{A}_0(-)$$
: nCob₂ \rightarrow Span₂(Gpd)

This fact uses that $nCob_2 \subset Span^2(ManCorn)$, consisting of double cospans:

(These form a "double bicategory", but it gives a bicategory since horizontal and vertical morphisms are composable.)

Theorem

There is a 2-functor ("2-linearization"):

```
\Lambda: \mathit{Span}_2(\mathbf{Gpd}) \to \mathbf{2Hilb}
```

Where, recall:

Definition

2Hilb is the 2-category of 2-Hilbert spaces, which consists of:

- Objects: Hilb-enriched abelian *-categories
- Morphisms: 2-linear maps: C-linear (hence abelian) functor.
- 2-Morphisms: Natural transformations

"Finite dimensional" (i.e. finitely generated) 2-Hilbert spaces are characterized by:

- Any fin. dim. 2-Hilbert space is equivalent to **Hilb**^k for some k (category of k-tuples of Hilbert spaces)
- 2-linear maps represented by a matrix of Hilbert spaces (acting by matrix multiplication with \otimes and \oplus)
- natural transformations represented by a matrix of linear maps

If we have a little more structure, we have:

 Any monoidal 2-Hilbert spaces is equivalent to Rep(G), the category of (continuous) unitary representations of some compact (super)groupoid

Conjecture (Baez, Baratin, Freidel, Wise):

• Any 2-Hilbert spaces is equivalent to Rep(A) for some von Neumann algebra A.

If **X** and **B** are (nice) groupoids, $f : \mathbf{X} \to \mathbf{B}$ gives restriction map $f^* = F \circ f : Rep(\mathbf{B}) \to Rep(\mathbf{X})$ and the *induced representation* of F along f:

 $f_*: Rep(\mathbf{X}) \rightarrow Rep(\mathbf{B})$

is the two-sided adjoint of f^* .

In fact, the LEFT adjoint map f_* acts by:

$$f_*(F)(b) \cong \bigoplus_{f(x)\cong b} \mathbb{C}[Aut(b)] \otimes_{\mathbb{C}[Aut(x)]} F(x)$$

There is also a RIGHT adjoint:

$$f_{i}(F)(b) \cong \bigoplus_{[x]|f(x)\cong b} \hom_{\mathbb{C}[Aut(x)]}(\mathbb{C}[Aut(b)], F(x))$$

There is the canonical Nakayama isomorphism:

$$N_{(f,F,b)}: f_!(F)(b) \rightarrow f_*(F)(b)$$

given by the *exterior trace map* (which uses a modified group average in each factor):

$$N: \bigoplus_{[x]|f(x)\cong b} \phi_x \mapsto \bigoplus_{[x]|f(x)\cong b} \frac{1}{\#Aut(x)} \sum_{g\in Aut(b)} g \otimes \phi_x(g^{-1})$$

Under this identification we get that f^* and f_* are ambidextrous adjoints.

Call the adjunctions in which f_* is left or right adjoint to f^* the *left and right adjunctions* respectively. We want to use the counit for the right adjunction, the evaluation map:

$$\eta_R(G)(x): v \mapsto \bigoplus_{y|f(y)\cong x} (g \mapsto g(v))$$

and the unit for the left adjunction, which is determined by the action:

$$\epsilon_L(G)(x): \bigoplus_{[y]|f(y)\cong x} g_y \otimes v \mapsto \sum_{[y]|f(y)\cong x} f(g_y)v$$

These define maps between F(x) and $f_*f^*F(x)$.

(Note: there are canonical inner products around which make these maps *linear* adjoints.)

Definition

Define the 2-functor Λ as follows:

- Objects: $\Lambda(\mathbf{B}) = Rep(\mathbf{B}) := [\mathbf{B}, \mathbf{Hilb}]$ (Unitary reps)
- Morphisms $\Lambda(\mathbf{A} \stackrel{s}{\leftarrow} \mathbf{X} \stackrel{t}{\rightarrow} \mathbf{B}) = t_* \circ s^* : \Lambda(\mathbf{A}) \longrightarrow \Lambda(\mathbf{B})$
- 2-Morphisms: $\Lambda(Y, S, T) = \epsilon_{L,T} \circ N \circ \eta_{R,S} : (t)_* \circ (s)^* \rightarrow (t')_* \circ (s')^*$

Note: This Λ is a generalization of "degroupoidification" in the sense of Baez/Dolan. Both 1-morphisms and 2-morphisms use some form of "pull-push" process.

We'll consider extending the construction for Λ by replacing **2Hilb** with a bicategory of bimodules:

Definition

The bicategory $C^* - Bim$ has:

- **Objects**: C*-algebras
- **Morphisms**: *Hom*(*A*, *B*) consists of all (*A*, *B*)-Hilbert bimodules: Hilbert spaces with compatible (unitary) left action of *A* and right action of *B*
- 2-Morphisms: Bimodule maps

via:

- von Neumann algebra: $\mathbf{B} \mapsto Rep(\mathbf{B})$
- 2-linear maps represented by Hilbert bimodules
- Natural transformations represented by bimodule maps

and thus

 $\Lambda(\mathcal{A}_0(\Sigma), s, t) = (t_* \circ s^*) : \operatorname{Rep}(C^*(\mathcal{A}_0(S_1))) \to \operatorname{Rep}(C^*(\mathcal{A}_0(S_2)))$

Frobenius reciprocity (adjointness of t_* and t^*) says that if ρ is an irrep of $C^*(\mathcal{A}_0(S_1))$, the multiplicity of an irrep ϕ of $C^*(\mathcal{A}_0(S_2))$ in $\Lambda(\Sigma)(\rho)$ is the dimension of:

$$M(s, t, \rho, \phi) = Hom_{Rep(C^*(\mathcal{A}_0(\Sigma)))}(s^*\rho, t^*\phi)$$

Thus the functor $\Lambda(\Sigma)$ is given by tensoring with the bimodule:

$$B(s,t) = \bigoplus_{(\rho,\phi)} \rho \otimes_{C^*(\mathcal{A}_0(S_1))} M(s,t,\rho,\phi) \otimes_{C^*(\mathcal{A}_0(S_2))} \phi$$

But irreps of groupoids are classified by pairs $([g], \psi)$, where

- [g] is an isomorphism class of object
- ψ is an irrep of Aut(g)

So if we specify $\rho = ([a_1], \rho)$, and $\phi = ([a_2], \phi)$ then $M(s, t, \rho, \phi)$ is:

$$M(s, t, ([a_1], \rho), ([a_2], \phi)) = \hom_{Rep(Aut(a_2))}(t_* \circ s^*(\rho), \phi)$$

$$\simeq \int_{[x]\in \underline{(s,t)^{-1}([a_1], [a_2])}}^{\oplus} \hom_{Rep(Aut(x))}(s^*(\rho), t^*(\phi))$$

Given a 2-morphism in **nCob**₂, we get a span of groupoid span maps:

Then Λ gives rise to a bimodule map $B(s, t) \rightarrow B(s', t')$, given by the maps

$$M(s,t,\rho,\phi) \stackrel{(\epsilon_{L,T})_{\rho,\phi}}{\longrightarrow} M(s \circ S, t \circ T, \rho, \phi) \stackrel{N \circ (\eta_{R,S})_{\rho,\phi}}{\longrightarrow} M(s',t',\rho,\phi)$$

1

Theorem

The above construction gives an ETQFT valued in the bimodule category:

 \hat{Z}_{G} : **nCob**₂ \rightarrow C^{*} – Bim

Idea: This describes the physics of a QFT on spacetimes with boundary:

- Algebras associated to boundaries describe symmetries
- Irreps (e.g. ρ and ϕ) are superselection sectors
- (*A*, *B*)-bimodules like *B*(*s*, *t*) are Hilbert spaces for space with boundaries
- Bimodule maps describe (time)-evolution operators

We want a context to look at the twisted DW theory. The twisted theory has a "topological action" which depends on a class

 $[\omega] \in H^n_{grp}(G, U(1))$

which we think of as represented by a particular cocycle

 $\omega \in Z^n(BG, U(1))$

(Since *n* now matters, we'll stick to n = 3.)

Then the twisted form of the ETQFT will factor as:

$$Z_G^{\omega} = \Lambda^{U(1)} \circ \mathcal{A}_0^{\omega}(-)$$

But this factors through a different category. Which one? The key idea is *transgression* of the cocycle on *BG*.

20 / 34

Recall that BG for a group(oid) G can be constructed as a simplicial complex with:

- A vertex (0-simplex) for each object of G
- An edge (1-simplex) for each morphism of G (group element)
- Higher cells for all composition relations, and so that *BG* has no higher homotopy groups
- It is constructed so that $\Pi_1(BG) = G$, and we have that:

$$Hom(\Pi_1(M), G) \cong Maps_0(M, BG)$$

That is, flat connections on M correspond to homotopy classes of maps from M to BG.

Transgression of $\omega \in Z^3(BG, U(1))$ is a way to pull back the cocycle ω to the groupoids of connections.

There is the evaluation map:

$$ev: M \times Maps(M, BG) \rightarrow BG$$

If *M* is *k*-dimensional, $Im(M \times f) = f(M)$ is a (possibly degenerate) *k*-chain in *BG*. So we have a (3 - k)-cocycle on Maps(M, BG), the "transgression" of ω :

$$au_{\mathcal{M}}(\omega) \in \mathcal{H}^{3-k}(Maps(M,BG),U(1))$$

It is given by integrating ω :

$$au_{M}(\omega) = \int_{M} e v^{*}(\omega)$$

But since Maps(M, BG) classifies the groupoid $\mathcal{A}_0(M)$, this is a (3 - k)-cocycle in the groupoid cohomology! This tells us the 2-category we need.

Definition (Part 1)

The monoidal 2-category $\text{Span}(\mathbf{Gpd})^{U(1)}$ has:

- **Objects**: groupoids A equipped with 2-cocycle $\theta \in Z^2(A, U(1))$
- 1-Morphisms: a morphism from (A, θ_A) to (B, θ_B) is a span of groupoids A ^s X ^t→ B, equipped with 1-cocycle α ∈ Z¹(X, U(1))
- 2-morphisms: a 2-morphism from (X, α, s, t) to (X', α', s', t') in Hom((A, θ_A), (B, θ_B)) is a class of spans of span maps X ← Y → X' equipped with 0-cocycle β ∈ Z⁰(Y, U(1)), with equivalence taken up to β-preserving isomorphism of Y

But this is subject to some conditions...

Definition (Part 2)

• In any 1-morphism

$$(X, \alpha, s, t) : (A, \theta_A) \rightarrow (B, \theta_B)$$

the cocycles satisfy

$$(s^* heta_A)=(t^* heta_B)$$

• In any 2-morphism

$$(Y,\beta,S,T):(X_1,\alpha_1,s_1,t_1)\Rightarrow(X_2,\alpha_2,s_2,t_2)$$

the cocycles satisfy

$$(S^* \alpha_1)(T^* \alpha_2)^{-1} = 1$$

In particular, $[s^*\theta_A] = [t^*\theta_B]$ and $[S^*\alpha_1] = [T^*\alpha_2]$.

Composition of:

$$(X_1, \alpha_1, s_1, t_1) : (A, \theta_A) \rightarrow (B, \theta_B)$$

and

$$(X_2, \alpha_2, s_2, t_2) : (B, \theta_B) \rightarrow (C, \theta_C)$$

at (B, θ_B) gives the same span of groupoids as in Span(**Gpd**). The pullback groupoid's objects are triples (x_1, f, x_2) where $f: t_1(x_1) \rightarrow s_2(x_2) \in B$. Its morphisms are:

$$egin{aligned} &s_1(x_1) \stackrel{f}{\longrightarrow} t_2(x_2) \ &s_1(g_1) iggleq & b_1(x_1') \stackrel{f}{\longrightarrow} t_2(x_2') \end{aligned}$$

This groupoid gets the 1-cocycle

$$\alpha_1 \cdot \alpha_2 \cdot \theta_B$$

which assigns, to the morphism above, the value

$$\alpha_1(g_1) \cdot \alpha_2(g_2) \cdot \theta_B(f, f')$$

(Similar story for 2-morphism compositions) Jeffrey C. Morton (IST)

Extended TQFT in a Bimodule 2-Category

Theorem

Span(**Gpd**)^{U(1)} is a symmetric monoidal 2-category, and contains Span(**Gpd**) as a sub-(symmetric monoidal 2-category) consisting of those objects and morphisms with constant cocycles $\theta = 1$, $\alpha = 1$, $\beta = 1$.

Idea: The 0-cocycles on 2-morphisms are the *Lagrangian*, or *action functional* on objects: connections on top-dimensional cobordism. The twisted theory will factor as:

- $\mathcal{A}_0^{\omega}(-): \mathbf{3Cob}_2 \rightarrow \mathrm{Span}(\mathbf{Gpd})^{U(1)}$
- $\Lambda^{U(1)}$: Span(Gpd)^{U(1)} \rightarrow 2Hilb

Note: only the "classical" part of this factorization depends on the choice of cocycle $\omega.$

The Classical Field Theory

We can define the classical field theory, valued in groupoids carrying cocycles.

Definition

The for a fixed (compact) group G and group 3-cocycle ω , the classical field theory is a symmetric monoidal 2-functor:

$$\mathcal{A}_0(-)^\omega: \mathbf{3Cob}_2
ightarrow \mathsf{Span}(\mathbf{Gpd})^{U(1)}$$
 (1)

which acts as follows:

- Objects: $\mathcal{A}_0(S)^\omega = (\mathcal{A}_0(S), \tau_S(\omega))$
- Morphisms: $\mathcal{A}_0(\Sigma : S_1 \to S_2)^{\omega} = (\mathcal{A}_0(\Sigma), \tau_{\Sigma}(\omega), i_1^*, i_2^*)$ (where the i_j are the inclusion maps of the S_j into Σ).
- 2-Morphisms: $\mathcal{A}_0(M : \Sigma \to \Sigma')^{\omega} = (\mathcal{A}_0(M), \tau_M(\omega), i^*, (i')^*)$, where again *i* and *i'* are inclusion maps of Σ and Σ' into *M*.

(To prove it is a well-defined 2-functor, the key is Stokes' theorem to get the compatibility conditions for the cocycles).

Jeffrey C. Morton (IST)

The Twisted Quantization Functor

Definition (Part 1)

Define the 2-functor

$$\hat{\Lambda}^{U(1)}$$
: Span(**Gpd**) ^{$U(1)$} $\rightarrow C^* - Bim$

acts on objects by

$$\Lambda^{U(1)}(A,\theta_A) = \mathbb{C}^{\theta_A}(A)$$

Where $\mathbb{C}^{\theta_A}(A)$ is the algebra of functions on (morphisms of) the groupoid A with the "twisted multiplication":

$$(F \star_A G)(f) = \int_{g \in G} F(g)G(g^{-1}f)\theta_A(g,g^{-1}f)$$

(The usual groupoid algebra occurse when $\theta_A \cong 1$.)

Definition (Part 2)

To a morphism $(X, \alpha_X, s, t) : (A, \theta_A) \to (B, \theta_B) \hat{\Lambda}^{U(1)}$ defines a bimodule representing the 2-linear map:

$$\hat{\Lambda}^{U(1)}(X, \alpha_X, s, t) = t_* \circ (M_{\alpha_X})^* \circ s^*$$

where $M_{\alpha_X} : \mathbb{C}^{s^*\theta_A}(X) \to \mathbb{C}^{t^*\theta_B}(X)$ is the isomorphism of these groupoid algebras induced by multiplication by α_X .

The point is that $M_{\alpha_X}(F)(g) = \alpha_X(g)F(g)$ is an algebra automorphism for $\mathbb{C}^{s^*\theta_A}(X)$. Note that this is the same as $\mathbb{C}^{t^*\theta_B}(X)$ since $s^*\theta_A = t^*\theta_B$. The main effect of this on the bimodule is to twist the *inner product* on the intertwiner spaces.

Definition (Part 3)

To a 2-morphism $(Y, \beta_Y, \sigma, \tau) : (X_1, \alpha_1, s_1, t_1) \Rightarrow (X_2, \alpha_2, s_2, t_2)$ assign the bimodule map corresponding to the natural transformation:

$$\hat{\Lambda}^{U(1)}(Y,\beta_Y,\sigma,\tau) = \epsilon_{L,\tau} \circ N_{\beta_Y} \circ \eta_{R,\sigma}$$

from $(t_1)_* \circ (M_{\alpha_1})^* \circ s_1^*$ to $(t_2)_* \circ (M_{\alpha_2})^* \circ s_2^*$ using the "twisted form" of the Nakayama isomorphism:

$$N_{\beta_{Y}}: \sigma_{*} \circ (M_{\sigma^{*}\alpha_{1}})^{*} \circ \sigma^{*} \Longrightarrow \tau_{*} \circ (M_{\tau^{*}\alpha_{2}})^{*} \circ \tau^{*}$$

relating the (α -twisted) forms of the left and right adjunction, at $y \in Y$ by:

$$N_{\beta_{Y}}: \bigoplus_{[y]|f(y)\cong x} \phi_{y} \mapsto \bigoplus_{[y]|f(y)\cong x} \frac{\beta_{Y}(y)}{\#Aut(y)} \sum_{g \in Aut(x)} g \otimes \phi_{y}(g^{-1})$$

Theorem

Given a finite gauge group G and 3-cocycle $\omega \in Z^3(BG, U(1))$, the symmetric monoidal 2-functor

$$Z_G^{\omega} = \Lambda^{U(1)} \circ \mathcal{A}_0(-)^{\omega} : \mathbf{3Cob}_2 \rightarrow \mathbf{2Hilb}$$

reproduces the Dijkgraaf-Witten (DW) model with twisting cocycle ω .

When G is any compact Lie group, we will get an analogous $C^* - Bim$ -valued ETQFT.

$$\hat{Z}_{G}^{\omega}$$
 : **3Cob**₂ \rightarrow C^{*} – *Bim*

Aim: Because the DW model is the discrete form of Chern-Simons theory, this should describe the local structure of CS theory with topological action. The twisting of N_{β_Y} gives the action in the path integral.

32 / 34

Extending to cover (compact) Lie groups, some formulas change, replacing \oplus with \int^{\oplus} , etc. But:

If G = SU(2), $A_0(S^1) = SU(2)//SU(2)$. The irreducible objects of $Rep(A_0(S^1))$ (or reps of the groupoid algebra) are given by:

- conjugacy class [g] of SU(2)
- representation of stabilizer of [g]: U(1) (SU(2) if [g] = $\pm e$):

Take the circle as boundary around an excised point particle: a conjugacy class in SU(2) is an angle in $[0, 2\pi]$, which is the *mass m* of particle; an irrep of U(1) is labelled by an integer, the *spin* of a particle.

Generalization: Span(**Gpd**) is naturally a 2-category, so our construction can only give an ETQFT down to codimension 2.

To give better invariants for 4-manifolds, we perhaps should use a theory whose moduli space is valued in **2Gpd**... Higher gauge theory.

For a 2-group \mathcal{G} , define a 3-functor

$\mathit{Z}_{\mathcal{G}}: nCob_{3} \!\rightarrow\! 3Vect$

factoring through a classical moduli space:

$$\mathcal{A}_0^{(2)} = 2 \operatorname{Fun}[\Pi_2(-), \mathcal{G}]$$

The 2-functor 2-groupoid, understood as flat 2-connections, gauge transformations, and "gauge modifications".