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Summary: Describe an Extended Topological Field Theory with
topological action in terms of a factorization into classical field theory and
quantization functor.

Definition

An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→ 2Hilb

where nCob2 has

Objects: (n − 2)-dimensional manifolds

Morphisms: (n − 1)-dimensional cobordisms (manifolds with
boundary, with ∂M a union of source and target objects)

2-Morphisms: n-dimensional cobordisms with corners
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The related program of Freed, Hopkins, Lurie, Teleman aims to describe
local structure of n-dimensional TQFT as a fully-extended ETQFT. That
is, an n-functor from nCobn to nAlg.
Their program has two parts:

A classical field theory, valued in groupoids

A quantization functor, valued in n-algebras (roughly, monoidal
n-vector spaces)

Goal: Define such an ETQFT by a factorization

ZG = Λ ◦ A0(−)

where
A0(−) : nCob2→Span2(Gpd)

and
Λ : Span2(Gpd)→ 2Hilb
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Definition (Part 1)

The bicategory Span2(Gpd) has:

Objects: Groupoids

Morphisms: Spans of groupoids:
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Definition (Part 2)

The 2-morphisms of Span2(Gpd) are spans of span maps, commuting up
to 2-cells of Gpd:
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Composition is by weak pullback taken up to isomorphism.

Theorem

There is a monoidal structure on Span2(Gpd) induced by the product in
Gpd, with monoidal unit 1.
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Spans in Physics

Span(C) is the universal 2-category containing C, and for which every
morphism has a (two-sided) adjoint. The fact that arrows have
adjoints means that Span(C) is a †-monoidal category. This is useful
to describe quantum physics. (See Abramsky and Coecke, Vicary).
(Compare also “dualizable” conditions for TQFT.)

Physically, X will represent an object of histories leading the system
A to the system B. Maps s and t pick the starting and terminating
configurations in A and B for a given history (in the sense internal to
C). (Adjointness corresponds to time reversal of histories.)

Histories should be given an action by a Lagrangian functional. We’ll
see later how to incorporate this into Span(Gpd).
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The “classical field theory” is a (topological) gauge theory, for gauge
group G . The values are in the moduli space of connections:

Definition

Given M, the groupoid A0(M) = hom(π1(M))//G has:

Objects: Flat connections on M

Morphisms Gauge transformations

This induces a 2-functor:

A0(−) : nCob2→Span2(Gpd)

Jeffrey C. Morton (IST) Extended TQFT in a Bimodule 2-Category Erlangen 2011 7 / 34



This fact uses that nCob2 ⊂ Span2(ManCorn), consisting of double
cospans:

nCob2 Span2(ManCorn)
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(These form a “double bicategory”, but it gives a bicategory since
horizontal and vertical morphisms are composable.)
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Theorem

There is a 2-functor (“2-linearization”):

Λ : Span2(Gpd)→ 2Hilb

Where, recall:

Definition

2Hilb is the 2-category of 2-Hilbert spaces, which consists of:

Objects: Hilb-enriched abelian ?-categories

Morphisms: 2-linear maps: C-linear (hence abelian) functor.

2-Morphisms: Natural transformations
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“Finite dimensional” (i.e. finitely generated) 2-Hilbert spaces are
characterized by:

Any fin. dim. 2-Hilbert space is equivalent to Hilbk for some k
(category of k-tuples of Hilbert spaces)

2-linear maps represented by a matrix of Hilbert spaces (acting by
matrix multiplication with ⊗ and ⊕)

natural transformations represented by a matrix of linear maps

If we have a little more structure, we have:

Any monoidal 2-Hilbert spaces is equivalent to Rep(G), the category
of (continuous) unitary representations of some compact
(super)groupoid

Conjecture (Baez, Baratin, Freidel, Wise):

Any 2-Hilbert spaces is equivalent to Rep(A) for some von Neumann
algebra A.
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If X and B are (nice) groupoids, f : X→B gives restriction map
f ∗ = F ◦ f : Rep(B)→Rep(X) and the induced representation of F along
f :

f∗ : Rep(X)→Rep(B)

is the two-sided adjoint of f ∗.
In fact, the LEFT adjoint map f∗ acts by:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

There is also a RIGHT adjoint:

f!(F )(b) ∼=
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))
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There is the canonical Nakayama isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map (which uses a modified group average in
each factor):

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification we get that f ∗ and f∗ are ambidextrous adjoints.
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Call the adjunctions in which f∗ is left or right adjoint to f ∗ the left and
right adjunctions respectively. We want to use the counit for the right
adjunction, the evaluation map:

ηR(G )(x) : v 7→
⊕

y |f (y)∼=x

(g 7→ g(v))

and the unit for the left adjunction, which is determined by the action:

εL(G )(x) :
⊕

[y ]|f (y)∼=x

gy ⊗ v 7→
∑

[y ]|f (y)∼=x

f (gy )v

These define maps between F (x) and f∗f
∗F (x).

(Note: there are canonical inner products around which make these maps
linear adjoints.)
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Definition

Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Hilb] (Unitary reps)

Morphisms Λ(A
s← X

t→ B) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)

2-Morphisms: Λ(Y , S ,T ) = εL,T ◦ N ◦ ηR,S : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

Note: This Λ is a generalization of “degroupoidification” in the sense of
Baez/Dolan. Both 1-morphisms and 2-morphisms use some form of
“pull-push” process.
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We’ll consider extending the construction for Λ by replacing 2Hilb with a
bicategory of bimodules:

Definition

The bicategory C ∗ − Bim has:

Objects: C ∗-algebras

Morphisms: Hom(A,B) consists of all (A,B)-Hilbert bimodules:
Hilbert spaces with compatible (unitary) left action of A and right
action of B

2-Morphisms: Bimodule maps

via:

von Neumann algebra: B 7→ Rep(B)

2-linear maps represented by Hilbert bimodules

Natural transformations represented by bimodule maps
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A span like:
A0(Σ)

t
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Rep(C ∗(A0(Σ)))
t∗
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Rep(C ∗(A0(S1)))

s∗
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Rep(C ∗(A0(S2)))
t∗
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and thus

Λ(A0(Σ), s, t) = (t∗ ◦ s∗) : Rep(C ∗(A0(S1)))→ Rep(C ∗(A0(S2)))
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Frobenius reciprocity (adjointness of t∗ and t∗) says that if ρ is an irrep of
C ∗(A0(S1)), the multiplicity of an irrep φ of C ∗(A0(S2)) in Λ(Σ)(ρ) is the
dimension of:

M(s, t, ρ, φ) = HomRep(C∗(A0(Σ)))(s∗ρ, t∗φ)

Thus the functor Λ(Σ) is given by tensoring with the bimodule:

B(s, t) =
⊕
(ρ,φ)

ρ⊗C∗(A0(S1)) M(s, t, ρ, φ)⊗C∗(A0(S2)) φ

But irreps of groupoids are classified by pairs ([g ], ψ), where

[g ] is an isomorphism class of object

ψ is an irrep of Aut(g)

So if we specify ρ = ([a1], ρ), and φ = ([a2], φ) then M(s, t, ρ, φ) is:

M(s, t, ([a1], ρ), ([a2], φ)) = homRep(Aut(a2))(t∗ ◦ s∗(ρ), φ)

'
∫ ⊕

[x]∈(s,t)−1([a1],[a2])
homRep(Aut(x))(s∗(ρ), t∗(φ))
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Given a 2-morphism in nCob2, we get a span of groupoid span maps:
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Then Λ gives rise to a bimodule map B(s, t)→B(s ′, t ′), given by the maps

M(s, t, ρ, φ)
(εL,T )ρ,φ−→ M(s ◦ S , t ◦ T , ρ, φ)

N◦(ηR,S )ρ,φ−→ M(s ′, t ′, ρ, φ)
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Theorem

The above construction gives an ETQFT valued in the bimodule category:

ẐG : nCob2→C ∗ − Bim

Idea: This describes the physics of a QFT on spacetimes with boundary:

Algebras associated to boundaries describe symmetries

Irreps (e.g. ρ and φ) are superselection sectors

(A,B)-bimodules like B(s, t) are Hilbert spaces for space with
boundaries

Bimodule maps describe (time)-evolution operators
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We want a context to look at the twisted DW theory. The twisted theory
has a “topological action” which depends on a class

[ω] ∈ Hn
grp(G ,U(1))

which we think of as represented by a particular cocycle

ω ∈ Zn(BG ,U(1))

(Since n now matters, we’ll stick to n = 3.)

Then the twisted form of the ETQFT will factor as:

Zω
G = ΛU(1) ◦ Aω0 (−)

But this factors through a different category. Which one?
The key idea is transgression of the cocycle on BG .
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Recall that BG for a group(oid) G can be constructed as a simplicial
complex with:

A vertex (0-simplex) for each object of G

An edge (1-simplex) for each morphism of G (group element)

Higher cells for all composition relations, and so that BG has no
higher homotopy groups

It is constructed so that Π1(BG ) = G , and we have that:

Hom(Π1(M),G ) ∼= Maps0(M,BG )

That is, flat connections on M correspond to homotopy classes of maps
from M to BG .
Transgression of ω ∈ Z 3(BG ,U(1)) is a way to pull back the cocycle ω
to the groupoids of connections.
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f(S)

g(S)

BG

f

g

X

S

Maps(S,BG)

ev

There is the evaluation map:

ev : M ×Maps(M,BG )→BG
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If M is k-dimensional, Im(M × f ) = f (M) is a (possibly degenerate)
k-chain in BG . So we have a (3− k)-cocycle on Maps(M,BG ), the
“transgression” of ω:

τM(ω) ∈ H3−k(Maps(M,BG ),U(1))

It is given by integrating ω:

τM(ω) =

∫
M

ev∗(ω)

But since Maps(M,BG ) classifies the groupoid A0(M), this is a
(3− k)-cocycle in the groupoid cohomology!
This tells us the 2-category we need.
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Definition (Part 1)

The monoidal 2-category Span(Gpd)U(1) has:

Objects: groupoids A equipped with 2-cocycle θ ∈ Z 2(A,U(1))

1-Morphisms: a morphism from (A, θA) to (B, θB) is a span of

groupoids A
s← X

t→ B, equipped with 1-cocycle α ∈ Z 1(X ,U(1))

2-morphisms: a 2-morphism from (X , α, s, t) to (X ′, α′, s ′, t ′) in
Hom((A, θA), (B, θB)) is a class of spans of span maps X ←Y →X ′

equipped with 0-cocycle β ∈ Z 0(Y ,U(1)), with equivalence taken up
to β-preserving isomorphism of Y

But this is subject to some conditions...
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Definition (Part 2)

In any 1-morphism

(X , α, s, t) : (A, θA)→(B, θB)

the cocycles satisfy
(s∗θA) = (t∗θB)

In any 2-morphism

(Y , β, S ,T ) : (X1, α1, s1, t1)⇒ (X2, α2, s2, t2)

the cocycles satisfy
(S∗α1)(T ∗α2)−1 = 1

In particular, [s∗θA] = [t∗θB ] and [S∗α1] = [T ∗α2].
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Composition of:
(X1, α1, s1, t1) : (A, θA)→(B, θB)

and
(X2, α2, s2, t2) : (B, θB)→(C , θC )

at (B, θB) gives the same span of groupoids as in Span(Gpd).
The pullback groupoid’s objects are triples (x1, f , x2) where
f : t1(x1)→ s2(x2) ∈ B. Its morphisms are:

s1(x1)
f //

s1(g1)
��

t2(x2)

t2(g2)
��

s1(x ′1)
f ′
// t2(x ′2)

This groupoid gets the 1-cocycle

α1 · α2 · θB
which assigns, to the morphism above, the value

α1(g1) · α2(g2) · θB(f , f ′)

(Similar story for 2-morphism compositions)
Jeffrey C. Morton (IST) Extended TQFT in a Bimodule 2-Category Erlangen 2011 26 / 34



Theorem

Span(Gpd)U(1) is a symmetric monoidal 2-category, and contains
Span(Gpd) as a sub-(symmetric monoidal 2-category) consisting of those
objects and morphisms with constant cocycles θ = 1, α = 1, β = 1.

Idea: The 0-cocycles on 2-morphisms are the Lagrangian, or action
functional on objects: connections on top-dimensional cobordism.
The twisted theory will factor as:

Aω0 (−) : 3Cob2→Span(Gpd)U(1)

ΛU(1) : Span(Gpd)U(1)→ 2Hilb

Note: only the “classical” part of this factorization depends on the choice
of cocycle ω.
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The Classical Field Theory
We can define the classical field theory, valued in groupoids carrying
cocycles.

Definition

The for a fixed (compact) group G and group 3-cocycle ω, the classical
field theory is a symmetric monoidal 2-functor:

A0(−)ω : 3Cob2→Span(Gpd)U(1) (1)

which acts as follows:

Objects: A0(S)ω = (A0(S), τS(ω))

Morphisms: A0(Σ : S1→S2)ω = (A0(Σ), τΣ(ω), i∗1 , i
∗
2 ) (where the ij

are the inclusion maps of the Sj into Σ).

2-Morphisms: A0(M : Σ→Σ′)ω = (A0(M), τM(ω), i∗, (i ′)∗), where
again i and i ′ are inclusion maps of Σ and Σ′ into M.

(To prove it is a well-defined 2-functor, the key is Stokes’ theorem to get
the compatibility conditions for the cocycles).
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The Twisted Quantization Functor

Definition (Part 1)

Define the 2-functor

Λ̂U(1) : Span(Gpd)U(1)→C ∗ − Bim

acts on objects by
ΛU(1)(A, θA) = CθA(A)

Where CθA(A) is the algebra of functions on (morphisms of) the groupoid
A with the “twisted multiplication”:

(F ?A G )(f ) =

∫
g∈G

F (g)G (g−1f )θA(g , g−1f )

(The usual groupoid algebra occurse when θA ∼= 1.)
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Definition (Part 2)

To a morphism (X , αX , s, t) : (A, θA)→(B, θB) Λ̂U(1) defines a bimodule
representing the 2-linear map:

Λ̂U(1)(X , αX , s, t) = t∗ ◦ (MαX
)∗ ◦ s∗

where MαX
: Cs∗θA(X )→Ct∗θB (X ) is the isomorphism of these groupoid

algebras induced by multiplication by αX .

The point is that MαX
(F )(g) = αX (g)F (g) is an algebra automorphism

for Cs∗θA(X ). Note that this is the same as Ct∗θB (X ) since s∗θA = t∗θB .
The main effect of this on the bimodule is to twist the inner product on
the intertwiner spaces.
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Definition (Part 3)

To a 2-morphism (Y , βY , σ, τ) : (X1, α1, s1, t1)⇒ (X2, α2, s2, t2) assign
the bimodule map corresponding to the natural transformation:

Λ̂U(1)(Y , βY , σ, τ) = εL,τ ◦ NβY ◦ ηR,σ

from (t1)∗ ◦ (Mα1)∗ ◦ s∗1 to (t2)∗ ◦ (Mα2)∗ ◦ s∗2 using the “twisted form” of
the Nakayama isomorphism:

NβY : σ∗ ◦ (Mσ∗α1)∗ ◦ σ∗ =⇒ τ∗ ◦ (Mτ∗α2)∗ ◦ τ∗

relating the (α-twisted) forms of the left and right adjunction, at y ∈ Y
by:

NβY :
⊕

[y ]|f (y)∼=x

φy 7→
⊕

[y ]|f (y)∼=x

βY (y)

#Aut(y)

∑
g∈Aut(x)

g ⊗ φy (g−1)
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Theorem

Given a finite gauge group G and 3-cocycle ω ∈ Z 3(BG ,U(1)), the
symmetric monoidal 2-functor

Zω
G = ΛU(1) ◦ A0(−)ω : 3Cob2→ 2Hilb

reproduces the Dijkgraaf-Witten (DW) model with twisting cocycle ω.

When G is any compact Lie group, we will get an analogous
C ∗ − Bim-valued ETQFT.

Ẑω
G : 3Cob2→C ∗ − Bim

Aim: Because the DW model is the discrete form of Chern-Simons theory,
this should describe the local structure of CS theory with topological
action. The twisting of NβY gives the action in the path integral.
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Extending to cover (compact) Lie groups, some formulas change, replacing
⊕ with

∫ ⊕
, etc. But:

If G = SU(2), A0(S1) = SU(2)//SU(2). The irreducible objects of
Rep(A0(S1)) (or reps of the groupoid algebra) are given by:

conjugacy class [g ] of SU(2)

representation of stabilizer of [g ]: U(1) (SU(2) if [g ] = ±e):

Take the circle as boundary around an excised point particle: a conjugacy
class in SU(2) is an angle in [0, 2π], which is the mass m of particle; an
irrep of U(1) is labelled by an integer, the spin of a particle.
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Generalization: Span(Gpd) is naturally a 2-category, so our construction
can only give an ETQFT down to codimension 2.
To give better invariants for 4-manifolds, we perhaps should use a theory
whose moduli space is valued in 2Gpd... Higher gauge theory.
For a 2-group G, define a 3-functor

ZG : nCob3→ 3Vect

factoring through a classical moduli space:

A(2)
0 = 2Fun[Π2(−),G]

The 2-functor 2-groupoid, understood as flat 2-connections, gauge
transformations, and “gauge modifications”.
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