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set-based structures ⇒ category-based structures

not systematic: any inverse to some decategorification process, such
as:

I Degroupoidification (Baez-Dolan): a functor D : Span(Gpd)→Hilb
I Khovanov-Lauda: C 7→ K0(C ), the Grothendieck ring (used for

algebraic categorification of quantum groups)

Goal: describe an example in which these two approaches are related
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The one-variable Heisenberg algebra is an algebra H given by two
generators a (“annihilation”) and a† “creation”), satisfying the canonical
commutation relation:

[a, a†] = aa† − a†a = 1 (1)

The general Heisenberg algebra has generators ai and a†i for each
i = 1, . . . , n, . . . .
There is only one nontrivial, irreducible representation (which is faithful)
of the algbera, on Fock space, H 7→ Aut(F), where:

F = C[[z ]]

(The space of (formal) power series in z).
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In this representation, the algebra is generated by:

af (z) = ∂z f (z) (2)

and
a†f (z) = zf (z) (3)

The commutation relation holds for a and a†, since:

∂z(zf (z)) = z∂z f (z) + f (z)

If we define an inner product on F where {zn} is an orthogonal basis such
that

〈zn, zn〉 =
1

n!

then a† is the adjoint of a.
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Groupoidification

Definition (Part 1)

The (monoidal) bicategory Span(Gpd) has:

Objects (Essentially finite/countable) groupoids

Morphisms Spans of groupoids:

X

s
���������

t
��

@@@@@@@

A B

2-Morphisms: Span maps f :

X
s

~~~~~~~~~~
t
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f
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A X ′
s′
oo

t′
// B
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Definition (Part 2)

Composition Span(Gpd) is defined by weak pullback:

X ′ ◦ X
S

{{xxxxxxxxx
T

##GGGGGGGGG
s◦S
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vt′◦T
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X

s
~~~~~~~~~~

t
##FFFFFFFFF
α
∼

+3 X ′

s′
{{wwwwwwwww

t′   AAAAAAAA

A1 A2 A3

Span(Gpd) has monoidal structure determined by the fact that Gpd
is Cartesian, so A⊗ B ∈ Span(Gpd) is A× B ∈ Gpd

Write Span1(Gpd) for the homotopy 1-category, whose morphisms are iso.
classes of 1-morphisms in Span(Gpd).
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Definition (Baez-Dolan)

The degroupoidification functor acts on

D : (Span1(Gpd))→ Hilb

assigns to a groupoid G
D(G ) = C(G )

which is given an inner product where

〈δa, δb〉 =
δa,b

#Aut(a)

To a span (X , s, t), D assigns the linear map

t∗ ◦ s∗ : D(A)→D(B)

where
s∗ : C(A)→C(X )

acts by composition with s, and t∗ is the 〈·, ·〉-adjoint of t∗.
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This amounts to a linear operator:

D(X )(f )([b]) =
∑

[x]∈t−1(b)

# Aut(b)

# Aut(x)
[f (s(x))]

which is represented by the matrix

D(X )([a],[b]) = |(s, t)−1(a, b)|

using groupoid cardinality.
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Physically, X will represent a groupoid of histories leading a system A to
the system B. Maps s and t pick the starting and terminating
configurations in A and B for a given history.

Definition

A state for an object A in a monoidal category is a morphism from the
monoidal unit, ψ : I →A.

In Hilb, this determines a vector by ψ : C→H. In Span(Gpd), the unit is
1, the terminal groupoid, so this is determined by:

S
Ψ→ A

where S is a groupoid, over A.
The Heisenberg algebra acting on Fock space describes the “quantum
harmonic oscillator”, one of the simplest quantum mechanical systems.
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The Heisenberg Algebra Again
Consider the groupoid FinSet0 (equivalently, the symmetric groupoid∐

n≥0 Sn), we find
D(FinSet0) = C[[z ]]

where zn marks the basis element δ[n], with the correct inner product for
Fock space.
Consider the span A:

FinSet0

∪?
xxrrrrrrrrrr

id
&&LLLLLLLLLL

FinSet0 FinSet0

and its dual A†. These generate a subcategory h of EndSpan(Gpd)(FinSet0).

Then D(A) = a = ∂t and D(A† = a† = z . So D(h) ∼= H, the Heisenberg
algebra.
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Such composites are described in terms of groupoids whose objects are
Feynman diagrams:

The source and target maps for the span pick the set of start and end
points. The morphisms of the groupoid are graph symmetries.
Degroupoidification D calculates operators which (after small modification
involving U(1)-labels) agree with the usual Feynman rules for calculating
amplitudes for the quantum harmonic oscillator.
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The Fock Monad
The Fock space F comes from a general construction

F (V ) =
⊕
n∈N

V⊗sn

where F = F (C).
This can be defined for any symmetric †-monoidal category C with
†-biproducts. This F is a monad which arises from an adjunction as
F = R ◦ Q:

C
Q
//
C×

R
oo

where C× is the category of cocommutative comonoid objects in C, and R
is the forgetful functor.
The structure of the operators a and a† arises from the fact that F (V )
naturally gets a bialgebra structure for any object V ∈ C.

Jeffrey C. Morton (IST) Two Categorifications of the Heisenberg Algebra (Joint work with Jamie Vicary)Göttingen 2011 12 / 35



The choice of the groupoid FinSet0 is made for similar reasons. There is a
similar situation for groupoids:

Gpd
Q
//
Gpd×

R
oo

Then we can take the free symmetric monoidal category on a groupoid:

Fs(G ) =
∐
n∈N

Sn n Gn

which is a groupoid with:

Objects: n-tuples g1 ⊗ · · · ⊗ gn ∈ Gn for some n

Morphisms (φ, (f1, . . . , fn)) with φ ∈ Sn and fi : gi→ g ′φ(i)

In particular, Fs(1) ' FinSet0.
We have D ◦ Fs = F ◦ D, so that D(FinSet0) is Fock space.
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Khovanov’s Categorification
The categorification of the Heisenberg algebra is an example of the
Khovanov-Lauda approach to categorifying Lie algebras, quantum groups,
etc.

Definition

There is a monoidal category H with

Objects: generated by points labelled Q+ (“up”) and Q− (“down”)

Morphisms: linear combinations of (string diagrams, agreeing with
orientations at endpoints, taken up to isotopy and certain local
moves):

The monoidal category H′ is the Karoubi envelope H = Kar(H′).

(The Karoubi envelope H′ makes all idempotents split. It includes
symmetric and antisymmetric powers of the objects, Sn

± = Sn(Q±) and∧
± =

∧n(Q±), respectively.)
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Local Moves for morphisms of H:

= =

= =+

= 0 =1

Jeffrey C. Morton (IST) Two Categorifications of the Heisenberg Algebra (Joint work with Jamie Vicary)Göttingen 2011 15 / 35



Commutation relations become specified isomorphisms, which are
described by such diagrams. For example:

Sn
s ⊗ Λm

+
∼= (Λm

+ ⊗ Sn
−)⊕ (Λm−1

+ ⊗ Sn−1
− ) (4)

Proposition (Khovanov)

There is a surjective map K0(H′)→H+ (onto the positive integer form of
the Heisenberg algebra).

(Khovanov conjectures it is an isomorphism.)

Question: How is this related to groupoidification?
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There is a (monoidal) 3-category Span2(Gpd) which allows all the 2-cells
from Gpd to have adjoints...

Definition (Part 3)

The 2-morphisms of Span2(Gpd) are spans of span maps, commuting up
to 2-cells of Gpd:

X1

s

��~~~~~~~~
t

  
@@@@@@@

A Y //oo

σ

OO

τ
��

B

X2

s′

``@@@@@@@@ t′

>>~~~~~~~

These are taken up to isomorphism. Composition is by weak pullback as
for 1-morphisms.

There are “horizontal and vertical duals” for each 2-morphism.

Jeffrey C. Morton (IST) Two Categorifications of the Heisenberg Algebra (Joint work with Jamie Vicary)Göttingen 2011 17 / 35



Ambiadjunctions

For Cartesian C, SpanC is the universal 2-category containing C, for
which every morphism in C has a (two-sided) adjoint.

In fact, that Span(C) is a †-monoidal, †-abelian category. This is
useful to describe quantum physics. (See Abramsky and Coecke,
Vicary).

Span(Gpd) is a universal 3-category containing Gpd such that every
morphism contains a two-sided adjoint
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The span F : A→B given as

X
s

���������
t

��
@@@@@@@

A B

has ambiadjoint F † : B→A found by reversing orientation:

X
t

��~~~~~~~
s

��
???????

B A

(5)

To fully specify the ambiadjunction, however, we need four unit and counit
2-morphisms:

ηL : IdA→F ◦ F †

ηR : IdB→F † ◦ F

εL : F † ◦ F → IdB

εR : F ◦ F †→ IdA
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We have ηL = εcoR :

A
id

{{xxxxxxxxx
id

##FFFFFFFFF

A X
soo s //

s

OO

∆t

��

A

(t ↓ t)

s◦π1

bbEEEEEEEEE s◦π2

<<yyyyyyyyy

(t ↓ t) is the comma category whose objects are (x , f , x ′) with
f : t(x)→ t(x ′), and whose morphisms are commuting squares

∆t : X →(t ↓ t) takes objects x 7→ (x , idt(x), x) and morphisms
g 7→ (g , g)

And similarly for ηR = εcoL .
These satisfy the usual adjunction properties:

(Id ◦ ηL) · (εL ◦ Id) = Id

(ηR ◦ Id) · (Id ◦ εR) = Id
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Take the case where F = A, the groupoidified annihilation operator. Then
the left unit ηL : IdFinSet0

⇒ A ◦ A† is (equivalent to):

FinSet0

id

xxrrrrrrrrrr
id

&&LLLLLLLLLL

FinSet0 FinSet0
+1
oo

+1
//

+1

OO

id
��

FinSet0

FinSet0

(+1)◦π1

ffLLLLLLLLLL (+1)◦π2

88rrrrrrrrrr

And the right unit ηR : IdFinSet0
⇒ A† ◦ A is:

FinSet0

id

xxppppppppppp
id

&&NNNNNNNNNNN

FinSet0 FinSet0
idoo id //

id

OO

∆+1

��

FinSet0

(+1 ↓ +1)

π1

ffMMMMMMMMMM π2

88qqqqqqqqqq
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Where (+1 ↓ +1) can be described up to equivalence by:

Objects: (S1, φ,S2), where φ : (S1 t ?)→(S2 t ?) is an isomorphism

Morphisms: Pairs (f1, f2), fi : Si→ S ′i giving commuting squares:

(+1)(S1)
φ
//

(+1)(f1)
��

(+1)(S2)

(+1)(f2)

��

(+1)(S ′1)
φ′
// (+1)(S2)

Up to equivalence, this amounts to:

Objects: (n, φ, n), where φ ∈ Sn+1

Morphisms: (π1, π2) ∈ S2
n such that φ′ ◦ π1 = π2 ◦ φ

Note that all these constructions depend only on the groupoids up to
equivalence (in fact, they are constructions involving stacks.)
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Internally, these look like:

3
4

2
3

4

2

ηL : IdFinSet0
⇒ A◦A† ηR : IdFinSet0

⇒ A†◦A

This also shows why A† ◦ A ∼= A ◦ A† ⊕ Id , (groupoidifies the relation
[a, a†] = 1): because “add-then-remove” has one more possibility than
“remove-then-add”.
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The units and counits for any ambiadjunction of F : A→B can be
represented graphically:

A

B A

B

ηL : IdB ⇒ F◦F † ηR : IdA ⇒ F †◦F

A

B A

B

εL : F †◦F ⇒ IdA εR : F◦F † ⇒ IdB
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Correspondence
Take Khovanov’s monoidal category H as a bicategory with one object, •.
Compare this to our h ⊂ EndSpan(Gpd)(FinSet0).

Span(Gpd) Khovanov

h H
FinSet0 •
A, A† Q−, Q+

IdA, IdA† ↓, ↑
◦ ⊗
η, ε ∩, ∪

(Note: Khovanov-type diagrams are read right-to-left)
In fact, Khovanov obtains a multi-variable Heisenberg algebra. There is a
distinct raising and lowering operator for each n. These are the “stages”
of A, A† for different n ∈ FinSet0. We can select them with the right
“state”.
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Then there are combinatorial interpretations of pictures like this:

=+

Namely: “add-then-remove” has one more possibility than
“remove-then-add”, since

The RHS shows the identity on A† ◦ A

First term on LHS swaps the order to give A ◦ A† (selects the case
“remove a different element from that added”

Second term selects the case “remove the same element added”
(otherwise the counit is zero)
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Similarly, there is an interpretation of:

= 0

Namely, that a certain sequence of changing processes cannot be done:

Add new element x into a set

(insert add-remove pair)

Add new element x , then y , then remove y

(swap adding x and y)

Add y , then x , then remove y

(cancel add-x-remove-y pair: IMPOSSIBLE)

Add y
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Khovanov proves the main result about H′ using a category based on
bimodules representing restriction and induction functors. This shows up
in Span(Gpd) by:

Theorem

There is an ambiadjunction-preserving 2-functor (“2-linearization”):

Λ : Span2(Gpd)→ 2Vect

Where, recall:

Definition

2Vect is the 2-category of 2-vector spaces, which consists of:

Objects: C-linear abelian category, generated by simple objects

Morphisms: 2-linear maps: C-linear (hence abelian) functor.

2-Morphisms: Natural transformations
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Definition

Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]

Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)

2-Morphisms: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

This is summarized graphically as:

X1

s

��~~~~~~~~
t

  
@@@@@@@

A Y //oo

σ

OO

τ
��

B

X2

s′

``@@@@@@@@ t′

>>~~~~~~~

⇒ YA Bs t

s1 t1

X1

s2 t2

X2
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The map N is a special isomorphism between the left and right adjoints of
s∗ or t∗.
For any homomorphism of groupoids f , the LEFT adjoint map of f ∗,
called f∗, acts by:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

This is a (left) Kan extension of the functor F along f .

There is also a RIGHT adjoint (right Kan extension):

f!(F )(b) ∼=
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))

We want to represent this by tensoring with a bimodule as with f∗.
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There is the canonical Nakayama isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map (which uses a modified group average in
each factor):

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification we get that f ∗ and f∗ are ambidextrous adjoints.
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Theorem

Restricting to homSpan2(Gpd)(1, 1):

A
!

����������
!

��
????????

1 X

s

OO

t
��

1

B

!

__???????? !

??��������

Λ on 2-morphisms is just the degroupoidification functor D.

Since any Hom(A,B) has a map to Hom(1, 1 by composing with the
unique maps A,B→ 1, the original groupoidification is recovered from the
image of ηL and its dual.
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There is a pseudomonad

Fv : 2Vect→ 2Vect

which assigns the free symmetric monoidal 2-vector space for an object X :

Fv (X ) = ⊕n∈NX⊗sn (6)

The symmetric tensor product X ⊗s X is a pseudo-limit, using an equifier
2-cell for the diagram:

X ⊗ X

τX ,X

��

idX⊗X

CC
X ⊗ X (7)

(This gives an action of the permutation group on any object of X⊗sn.)
We have Λ ◦ Fs

∼= Fv ◦ Λ, Fv (Vect) ' Λ(FinSet0) = Rep(FinSet0).
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The 2-vectorial “Fock space” is Λ(FinSet0) ∼=
∏

n Rep(Σn). Λ(A) and
Λ(A†) = ⊕n(−⊗ Cn) give representations counting paths in this lattice:

C
��

wwooo
''OOOO

������
��

????
������

��
//

zztttttt
�� zzttttt

�� $$JJJJJJ
��

$$JJJJJJJJ

�����������

�� ���������

��
��

??????

���������

��
???????

�� ��
???????

��������
��

��
?????????
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