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Definition

An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→ 2Vect

where nCob2 has

Objects: (n − 2)-dimensional manifolds

Morphisms: (n − 1)-dimensional cobordisms (manifolds with
boundary, with ∂M a union of source and target objects)

2-Morphisms: n-dimensional cobordisms with corners

We’ll construct an ETQFT by factoring through a 2-category Span(Gpd),
then applying some universal process.
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“Physical” applications of groupoids arise mostly from action groupoid
S//G associated to a G -action on S , where S is a space of configurations.
(Secretly the groupoid is a stack.)

Example

Moduli space for gauge theory, for (finite) gauge group G . Given M, the
groupoid A0(M,G ) = hom(π1(M),G )//G has:

Objects: Flat connections on M

Morphisms Gauge transformations

Goal: Using the induced 2-functor A0(−,G ) : nCob2→Span2(Gpd), we
get an ETQFT ZG = Λ ◦ A0(−,G ).

Problem: What?
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This relies on the fact that cobordisms in nCob2 actually live in
Span2(ManCorn), as double cospans (here n = 3):

nCob2 Span2(ManCorn)

S1
iA //

i1

��

(A
∐

D)

ι1

��

S1
∐

S1
i ′A⊗iD
oo

i2

��

Y
ι3 // M Y

ι4oo

S1
∐

S1
i2

//

i2

OO

Y

ι2

OO

S1

i1

OO

i1
oo

These form a “double bicategory”, but it can be coerced into becoming a
bicategory since horizontal and vertical morphisms are composable.
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Theorem

There is a 2-functor (“2-linearization”):

Λ : Span2(Gpd)→ 2Vect

A span in a category C is a diagram:

X

s
���������

t
��

@@@@@@@

A B

In a span A←X →B, think of X as a space (C-object) of histories;
intuitively s and t pick the starting and terminating configuration in
spaces A and B. (Only true if C is concrete.)

For groupoids, spans also go by “Morita morphisms”, etc.

Jeffrey C. Morton (IST) Extended TQFT from (Higher) Gauge Theories HGTQGR Feb 2011 5 / 20



The bicategory Span2(Gpd) (similar for any 2-category with weak
pullbacks) has:

Definition (Part 1)

Objects: Groupoids

Morphisms: Spans of groupoids

Composition defined by weak pullback:

X ′ ◦ X
S
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monoidal structure from the product in Gpd, monoidal unit 1

(We could stop here: Span1(C) is the universal category containing C with
duals for morphisms. But C = Gpd is a 2-category).
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Definition (Part 2)

The 2-morphisms of Span2(Gpd) are (iso. classes of) spans of span
maps:
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(Which possibly commute only up to 2-morphism of Gpd - here we ignore
this). Composition is by weak pullback taken up to isomorphism.

(Note: In general, Span2(C) will be the universal 2-category containing C
in which morphisms have ambidextrous adjoints.)
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Definition

2Vect is the 2-category of 2-vector spaces, which consists of:

Objects: C-linear abelian category, generated by simple objects

Morphisms: 2-linear maps: C-linear (hence abelian) functor.

2-Morphisms: Natural transformations

Finite dimensional 2-vector spaces all look like Vectk , and 2-linear maps
have a matrix representation. (Analogous examples occur for infinite
dimensional 2-vector spaces).

Lemma

If B is an essentially finite groupoid, the functor category
Λ(B) = Rep(B) := [B,Vect] is a KV 2-vector space.

The generators of [B,Vect] are irreducible reps - labeled by ([b],V ),
where [b] ∈ B and V an irreducible rep of Aut(b).
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Theorem

If X and B are essentially finite groupoids, a functor f : X→B gives two
2-linear maps:

f ∗ : Λ(B)→Λ(X)

with f ∗F = F ◦ f and (the restricted representation along f )

f∗ : Λ(X)→Λ(B)

the induced representation of F along f . Furthermore, f∗ is the two-sided
adjoint to f ∗.
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In fact, the adjoint map f∗ acts by:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

This is a (left) Kan extension of the functor F along f .
This is the left adjoint. But there is also a right adjoint (right Kan
extension):

f!(F )(b) ∼=
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))

There is the canonical Nakayama isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map (which uses a modified group average in
each factor):

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification we get that f ∗ and f∗ are ambidextrous adjoints.
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Call the adjunctions in which f∗ is left or right adjoint to f ∗ the left and
right adjunctions respectively. We want to use the counit for the right
adjunction, the evaluation map:

ηR(G )(x) : v 7→
⊕

y |f (y)∼=x

(g 7→ g(v))

and the unit for the left adjunction, which is determined by the action:

εL(G )(x) :
⊕

[y ]|f (y)∼=x

gy ⊗ v 7→
∑

[y ]|f (y)∼=x

f (gy )v

These define maps between F (x) and f∗f
∗F (x).

(Note: there are canonical inner products around which make these maps
linear adjoints. We are ignoring them for now.)
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Definition

Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]

Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(a) −→ Λ(B)

2-Morphisms: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

Λ(X , s, t) can be represented by the matrix with coefficients:

Λ(X , s, t)([a],V ),([b],W ) = homRep(Aut(b))(t∗ ◦ s∗(V ),W )

'
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))(s∗(V ), t∗(W ))

This is an intertwiner space for the groupoid representations. The
2-morphisms give (componentwise) linear maps between intertwiner
spaces.
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In the case where source and target are 1, there is only one basis object in
Λ(1) (the trivial representation), so the 2-linear maps are represented by a
single vector space. Then it turns out:

Theorem

Restricting to homSpan2(Gpd)(1, 1):
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where 1 is the (terminal) groupoid with one object and one morphism, Λ
on 2-morphisms is just the degroupoidification functor D of Baez and
Dolan.

A consequence is that ZG = Λ ◦ AG (−) gives the Dijkgraaf-Witten model
when n = 3.
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Generalization 1: Higher gauge theory - for a 2-group G, define a
3-functor ZG : nCob3→ 3Vect.
Sketch:

Definition

Fixing a 2-group G, the contravariant 2-functor

A(2)
0 = 2Fun[Π2(−),G]

assigns to a manifold M the 2-groupoid A(2)
0 (M) with:

Objects: 2-functors (“2-connections”)

Morphisms: natural transformations (“gauge transformations”)

2-Morphisms: modifications (...)

(and, to smooth functions, the induced maps).
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There’s an induced map Span3(ManCorn)→Span3(2Gpd), where
Span3(−) has, as 3-morphisms, equivalence classes of diagrams shaped
like:

•

•

•

• •
•

•
ggOO

''OO

TT*********

��������

GG������

��
*********yyrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLL

eeLLLLLLLLLLLLLL

99rrrrrrrrrrrrrr

(1)

Composition is again by weak pullback. (Note that 2-morphisms and
3-morphisms of 2Gpd can appear in Span3(2Gpd) by weakening the
assumption that this commutes.)

As before, nCob3 lives in Span3(ManCorn) (cubical, but can be
intimidated into being globular if desired).
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We would like to define a 3-functor

Λ(2) : Span3(2Gpd)→ 3Vect

Then assuming Λ(2) is well-defined, we should obtain an extended TQFT
3-functor:

ZG = Λ(2) ◦ A(2)
0 : nCob3→ 3Vect

For X ∈ 2Gpd, we expect to get:

Λ(2)(X ) = Rep(X ) = 2Fun(X , 2Vect)
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There should be, for each F : X →Y, an adjoint pair

F∗ : Rep(Y)→Rep(X )

and
F∗ : Rep(X )→Rep(Y)

where the induced representation functor F∗ is given by 2-Kan extension
along F .
To prove: It should be biadjoint. Moreover, to get 3-morphisms, the unit
and counit εL, ηR should themselves be biadjoint!

Eventually: One hopes this pattern will repeat with representations of
n-groupoids for all n. Must deal with slight trickiness of nVect.
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Generalization 2: ZG for G a compact Lie group (uses measured
groupoids)
Duplicating the above requires some changes:

Direct sums become direct integrals - which are not (co)limits

Push-forward is not just Kan extension of functors

Topology is nontrivial, so must deal explicitly with sheaves, instead of
functors, carrying representations

Ambi-adjunction requires Hilb instead of Vect in infinite-dim setting

The construction for Λ can be extended using:

Rep(B) 7→ Category of reps of von Neumann algebra associated to B

2-linear maps represented by Hilbert bimodules

Natural transformations represented by bimodule maps

This relates to a conjecture (Baez, Baratin, Freidel, Wise) that
infinite-dimensional 2-Hilbert spaces are representation categories for
v.N.-algebras.

Jeffrey C. Morton (IST) Extended TQFT from (Higher) Gauge Theories HGTQGR Feb 2011 18 / 20



2-Vector spaces must be generalized to categories like:

Definition

If (X , µ) is a measurable space Meas(X) is the category with:

Objects: measurable fields of Hilbert spaces on (X ,M)

Morphisms: measurable fields of bounded linear maps

A measurable field of Hilbert spaces on X determines a measurable sheaf
of Hilbert spaces in MSh(X , µ) by direct integration.

Theorem (Wendt)

Given a disintegration f : (X , µ)→(B, ν) (i.e. morphism in suitable
category of measure spaces), there is an adjoint pair:

MSh(X )
f ∗→←
f∗

MSh(Y )

Needed: A (groupoid-)equivariant version of this theorem.
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