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Motivation: Categorify a quantum mechanical description of states
and processes. We propose to represent:

@ configuration spaces of physical systems by groupoids (or
stacks), based on local symmetries
@ process relating two systems through time by a span of
groupoids, including a groupoid of “histories”
This is “doing physics in” the monoidal (2-)category Span(Gpd), and
relates to more standard formalism by:

@ Degroupoidification: turns this into physics in Vect (or Hilb), as
usual in quantum mechanics.

@ 2-Linearization gives a more complete equivalence-invariant A
for Span(Gpd). “Physics in 2Hilb.”
Both invariants rely on a pull-push process, and some form of
adjointness.
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Definition
A groupoid G (in Set) is a category in which all morphisms are

invertible. That is, as a category, consists of two sets Gy (of objects)
and G; (of morphisms/arrows) together with structure maps:

i _y)-1
G1XGOG1i>G1i£60—I>G1(—)> G1 (1)

which define source, target, identities, partially-defined composition,
and inverses, satysifying some properties making a groupoid a
“‘multi-object” generalization of a group.

Morphisms (arrows) of a groupoid can be composed if the source of
one arrow is the target of the other. This can be defined where G, and
G, are sets, topological spaces, manifolds, etc. (Then the maps must
be “nice” in a suitable sense in each case.)
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Definition
There is a 2-category Gpd with:
@ Objects: Groupoids (categories whose morphisms are all
invertible)

@ Morphisms: Functors between groupoids
@ 2-Morphisms: Natural transformations between functors

Groupoids provide a good way of thinking about local symmetry. E.g.
the transformation groupoid S//G comes from a set S with an action of
the group G: objects are elements of S, morphisms correspond to
group elements.
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Example

Some relevant groupoids:
@ Any set S can be seen as a groupoid with only identity morphisms
@ Any group G is a groupoid with one object

@ Given a set S with a group-action G x S— S yields a
transformation groupoid S//G whose objects are elements of S; if
g(s) = ¢ then there is a morphism gs : s — &’

@ Given a differentiable manifold M, the fundamental groupoid
M1(M) which has objects x € M and morphisms homotopy
classes of paths in M.

@ Given a differentiable manifold M and Lie group G, the groupoid

Ag(M) of principal G-bundles and bundle maps; and the
groupoid Ag(M) of FLAT G-bundles and maps.
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Physically, groupoids can describe configuration spaces for physical
systems. (Many physically realistic cases will also be, e.g. symplectic
manifolds, whose points are the objects of the groupoid).

Since groupoids are categories, it is usual to think of them up to
equivalence. For topological and smooth groupoids, the best version of
this is:

Definition

Two groupoids G and G’ are (strongly) Morita equivalent if there is a

pair of morphisms:
X
SN
G G’

where both f and g are suitably nice maps (otherwise this is a Morita
morphism). A stack is a Morita-equivalence class of groupoids.

(@)
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@ Strong Morita equivalence implies that the categories of
representations are equivalent (weak Morita equivalence)

@ In some cases, they are equivalent (but e.g. not for smooth
groupoids)

@ coincides with Morita equivalence for C* algebras, in the case of
groupoid algebras.

@ Morita equivalent groupoids are “physically indistinguishable”.
(E.g. full action groupoid; skeleton, with quotient space of objects).

Our proposal is that configuration spaces should be (topological,
smooth, etc.) stacks.
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Definition
A span in a category C is a diagram of the form:

A%X\t\B

A span map f between two spans consists of a compatible map of the

central objects:

X—f>X’

s t

A B

A cospan is a span in C° (i.e. C with arrows reversed).

We'll use C = Gpd, so s and t are functors (i.e. also map morphisms,
representing symmetries).
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Definition
The bicategory Span,(Gpd) has:
@ Objects: Groupoids
@ Morphisms: Spans of groupoids
@ Composition defined by weak pullback:

X' oX

@ 2-Morphisms : isomorphism classes of spans of span maps

@ monoidal structure from the product in Gpd, and duals for
morphisms and 2-morphisms.

v
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We can look at this two ways:

@ SpanC is the universal 2-category containing C, and for which
every morphism has a (two-sided) adjoint. The fact that arrows
have adjoints means that Span(C) is a -monoidal category
(which our representations should preserve).

@ Physically, X will represent an object of histories leading the
system A to the system B. Maps s and ¢ pick the starting and
terminating configurations in A and B for a given history (in the
sense internal to C).
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Definition
A state for an object A in a monoidal category is a morphism from the
monoidal unit, ¢ : [— A.

In Hilb, this determines a vector by ¢ : C — H. In Span(Gpd), the unit
is 1, the terminal groupoid, so this is determined by:

s¥a

where S is a groupoid, “fibred over A”.

Think of such a state as an ensemble over the base groupoid A.
Acting on a state for Ay by a span X : A; — A, produces a state over
As - an ensemble whose objects include a history:

15
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There is also a category Span(Gpd), taking spans only up to
isomorphism and neglecting the 2-morphisms, but still composing via
weak pullback.

There are two interesting functors for our purposes.
“Degroupoidificatidon” (Baez-Dolan):

D : Span;(Gpd) — Hilb

and “2-linearization” (Morton):

A : Span,(Gpd) — 2Hilb
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Definition
The cardinality of a groupoid G is

’
Gl = > 5
= # Aut(9)

where G is the set of isomorphism classes of objects of G. We call a
groupoid tame if this sum converges.

This has the nice property that it “gets along with quotients”:

Theorem (Baez, Dolan)
If S is a set with a G-action G x S— S, then

_#S
/61 =12

where # denotes ordinary set-cardinality.
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Degroupoidification works like this:
To linearize a (finite) groupoid, just take the free vector space on its
space of isomorphism classes of objects, CA.

Then there is a pair of linear maps associatedtomap f : A— B:
o f:CBCA withf*(g)=gof
- (b
o f.: CA— CB, with £(g)(b) = Xz Zan49()
The first is just composition with f. The second is the map sending the
vector d5 o d(5)- These are adjoint with respect to an inner product
such that ([gi], [9]]) = 7y - 9i-

This gives D = t, o s* as a modified “sum over histories”: when the
groupoids are sets, this just counts the number of histories from g; to
g;- The general case counts with groupoid cardinality.
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Definition
The functor
D : Span(Gpd) — Vect

is defined by with D(G) = C(G), and

pOX(N(B) = 3 #A“tb f(s(x))]

#AU(x).
wei)

In the case the groupoids are sets, this just gives multiplication by a
matrix counting the number of histories from x to y. In general, the
matrix D(X) has:

D(X)a,0p = (5, 1) (a b)|
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The groupoid cardinality is a special case of the volume of a stack,
which we need to deal with physically interesting examples.
Definition

A left Haar system for a (loc.cpt.) groupoid G is a family {\}cg,.
where \¥ is a (positive, regular, Borel) measure on G* = s*1(x).

Unlike for Haar measure on a Lie group, a (left) Haar system A\* is not
uniquely defined. It is only unique up to a (quasi-invariant, i.e.
equivariant) measure p on M.

Definition

If G is a groupoid, the space of objects is a measure space (G, 1),
and \* is a left Haar system, the stack volume of G is:

vol(X) = /X ( /S o dN) " dp

This is a stack invariant. (Based on Weinstein, where measures come
from volume forms.)
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Recall that the 2-morphisms of Span,(Gpd) are (iso. classes of)
spans of span maps:
X
7N

Ac——Y—B

N

XI
Composition is by weak pullback taken up to isomorphism.
Sometimes one just uses span maps: here, we want 2-morphisms as
well as morphisms to have adjoints, and taking spans allows this.
We want a representation of Span,(Gpd) that captures more than D,
and preserves the adjointness property for both kinds of morphism.
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Definition

A finite dimensional Kapranov-Voevodsky 2-vector space is a
C-linear finitely semisimple abelian category (one with a “direct sum”,
a.k.a. biproduct) generated by simple objects x, where

hom(x, x) = C). A 2-linear map between 2-vector spaces is a C-linear
(hence additive) functor. 2Vect is the 2-category of KV 2-vector
spaces, whose morphisms are 2-linear maps and whose 2-morphisms
are natural transformations.

Lemma

If B is an essentially finite groupoid, the functor category
A(B) = [B, Vect] is a KV 2-vector space.

The “basis elements” (generators) of [B, Vect] are labeled by ([b], V),
where [b] € B and V an irreducible rep of Aut(b).
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Definition
A 2-Hilbert space is an abelian H*-category. J

Unpacking this definition, a 2-Hilbert space H is an abelian category
such that:
@ each hom-set has the structure of a Hilbert space, and
composition of morphisms is bilinear.

@ H is equipped with a star structure—a contravariant functor
x . H— H which is the identity on objects and ** = 1.

@ The star structure on H induces an antinatural isomorphism

hom(x, y) = (hom(y, x))*

In finite dimensions, this is much like 2Vect, in that all 2-Hilbert spaces
are equivalent to Hilb”, in which case 2-linear maps are equivalent to
matrix multiplication with Hilbert space entries (using ® and & in place

of + and x).

19/35
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Baez, Freidel et. al. conjecture the following for the infinite-dimensional
case (incompletely understood):

Conjecture

Any 2-Hilbert spaces is of the following form: Rep(.A), the category of
representations of a von Neumann algebra A on Hilbert spaces. The
star structure takes the adjoint of a map.

Example

Rep(X) for a groupoid X, by taking .A to be the completion of the
groupoid C*-algebra C.(X).

Example

Rep(L>(X, 1)), for a measure space, gives the category of
measurable fields of Hilbert spaces on (X, 1)
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In this context:
@ For our physical interpretation A is the algebras of symmetries of
a system. The algebra of observables will be its commutant -
which depends on the choice of representation!

@ Basis elements are irreducible representations of the vN algebra -

physically, these can be interpreted as superselection sectors.
Any representation is a direct sum/integral of these.

@ Then 2-linear maps are functors, but can also be represented as
Hilbert bimodules between algebras. The simple components of
these bimodules are like matrix entries.
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Theorem

If X and B are essentially finite groupoids, a functor f : X — B gives two
2-linear maps:
f*: N(B) — A(X)

namely composition with f, with f*F = F o f and
f. : A(X) = A(B)

called “‘pushforward along f”. Furthermore, f, is the two-sided adjoint
to f* (i.e. both left-adjoint and right-adjoint).
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In fact, the adjoint map f, acts by:

f.(F)(b) = €D ClAut(b)] @ciaun) F(X)
f(x)=2b

This is the left adjoint. But there is also a right adjoint:

A(F)b)= P  homepau(ClAUt(b)], F(x))
[X]]f(x)=b

In fact, this is a two-sided adjunction, by using the Nakayama
isomorphism, a canonical isomorphism:

Nit.F.py : i(F)(b) — f.(F)(b)

given by the exterior trace map in each factor of the sum (which uses a
modified group average).
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Call the adjunctions in which f, is left or right adjoint to * the left and
right adjunctions respectively. We want to use the counit for the left
adjunction, which is the evaluation map:

nR(G)(X):G(x) = D homepauey (ClAUt(y)], G(x))
ylf(y)=x

v — @ (g~ 9(v)

yif(y)=x

and the unit for the right adjunction, which just uses the action:

aw(G)(x): @ ClAut(x)] @craumyy F*Gx)  —G(x)

If(y)=x
D gov = > f(gy)v
Ilf(y)=x V]I F(y)=x
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The Nakayama isomorphism does:
D we D gy > 900
[x]|f(x)~b [X]f(x)=b geAut(b)

By composing units/counits with N, we get that f* and f, are
ambidextrous adjoints.

Note: the group-average in N is necessary to make this an
isomorphism when working with modules over a general ring - not
obvious working over C!
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Definition
Define the 2-functor A as follows:
@ Objects: A(B) = Rep(B) := [B, Vect]
@ Morphisms A(X, s, t) = t. o s* : A(a) — A(B)
@ 2-Morphisms: A(Y,0,7) =€, 0o Nongy : (1)« o (8)* —=(t')« 0 (8)*

v

Picking basis elements ([a], V) € A(A), and ([b], W) € A(B), we get
that A(X, s, ) is represented by the matrix with coefficients:
N(X, 8, 1) ((a,v). (161, w) = NOMpep(aut(b))(t 0 S¥(V), W)

~ hom gep(aut(x)) (8™ (V), t*(W))
[x]e(s,t) 1 ([al],[6])

This is an intertwiner space, given by the analog of the inner product
(s*, t*¢) in a Hilbert space.
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In the case where source and target are 1, there is only one basis
object in A(1) (the trivial representation), so the 2-linear maps are
represented by a single vector space. Then it turns out:

Theorem
Restricting to homspan2(Gpd)(1 ; 1)

A
SN
S
1 X 1
N A
B
where 1 is the (terminal) groupoid with one object and one morphism,
A on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in N.
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Example

In the case where A = B = FinSety (equivalently, the symmetric
groupoid [ [~ Zn - note no longer finite), we find

D(FinSeto) = C[[{]]

where t" marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).

The operators a = 9; and al = My, generate the Weyl/ algebra of
operators for the QHO. These are given under D by the span A:

FinSetg

FinSety FinSetg

and its dual Af. Composites of these give a categorification of
operators explicitly in terms of Feynman diagrams.
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Such composites are described in terms of groupoids whose objects
look like this:

The source and target maps for the span pick the set of start and end
points. The morphisms of the groupoid are graph symmetries.
Degroupoidification D calculates operators which (after small
modification involving U(1)-labels) agree with the usual Feynman rules
for calculating amplitudes.
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An ongoing project (with Jamie Vicary) is to study the 2-categorical
version of this picture. There are analogs of creation and annihilation
operators in other hom-categories than hom(1,1):

FinSetg

Vi u{*}] K

FinSeto «—— FinSetg —}> FinSetg

U{*,x} U{*
K o /
FinSetg

This is a 2-morphism a4 : A— AAAT creates a “creation/annihilation
pair” at the 1-morphism level.

Composites of these act as rewrite rules on the Feynman diagrams
like those seen previously (now with “boundary” maps).
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The image of this picture under A involves representation theory of the
symmetric groups as A(FinSetg) = [ [, Rep(X,), and gives rise to
“paraparticle statistics”:
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Example
An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob> — 2Vect

where nCob, has
@ Objects: (n — 2)-dimensional manifolds

@ Morphisms: (n — 1)-dimensional cobordisms (manifolds with
boundary, with 9M a union of source and target objects)

@ 2-Morphisms: n-dimensional cobordisms with corners

One construction uses gauge theory, for gauge group G (here a finite
group). Given M, the groupoid Ay(M, G) = hom(m1(M), G)// G has:

@ Objects: Flat connections on M
@ Morphisms Gauge transformations

Then Ay(—, G) : nCoby — Span,(Gpd), and there is an ETQFT
ZG =No AO(_a G)
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This relies on the fact that cobordisms in nCob, can be transformed
into products of cospans:

nCob, Spar?(Top)

Y Y
SIS g — st

Then Ag(—, G) maps these into Span?(Gpd).
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Suppose S : S' + S' — S' is the “pair of pants”, showing two
“particles” fusing into one.

Then we have the diagram:

(G/G)? G/G

Where the map A leaves connections fixed, and acts as the diagonal
on gauge transformations; and m is the multiplication map.
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@ View S' as the boundary around a system (e.g. particle).

@ Irreducible objects of Zg(S') ~ [G// G, Vect] are labelled by
([g], W), for [g] a conjugacy class in G and W an irrep of its
stabilizer subgroup

@ For G = SU(2), this is an angle m € [0, 27], a particle; and an
irrep of U(1) (or SU(2) for m = 0) is labelled by an integer j

@ This theory then looks like 3D quantum gravity coupled to
particles with mass and spin. with mass m and spin j

@ Under the topology change of the pair of pants, a pair of such reps
is taken to one with nontrivial representations (superselection
sectors) for all [mn’] for any representatives of [m], [m] (each
possible total mass and spin for the combined system).

Dynamics (maps between Hilbert spaces) space arises from the
2-morphisms - componentwise in each 2-linear map.
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