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Context: “Categorify”quantum mechanical description of states and
processes.

We propose to represent:

configuration spaces of physical systems by n-groupoids (or n-stacks),
based on local symmetries

process relating two systems through time by a span of groupoids,
including a groupoid of “histories”

higher spans for composition of systems

This can be represented in Hilb by “degroupoidification” (Baez/Dolan).
We’ll look for “higher” analogs.
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Definition

A groupoid G is a category in which all arrows are invertible.

Any group G is a groupoid with one object

Given a set S with a group-action G × S→S yields a transformation
groupoid S//G whose objects are elements of S ; if g(s) = s ′ then
there is an arrow gs : s→ s ′

“Physical” applications of groupoids arise mostly from S//G
associated to a G -action on S is a space of configurations.

Morita equivalent groupoids are “physically indistinguishable”. (E.g.
full action groupoid; quotient with automorphisms)

Example

Moduli space for gauge theory, for (finite) gauge group G . Given M, the
groupoid A0(M,G ) = hom(π1(M),G )//G has:

Objects: Flat connections on M

Arrows Gauge transformations
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A span of groupoids is a diagram:

X

s
���������

t
��

@@@@@@@

A B

whose arrows are groupoid homomorphisms (i.e. functors between
groupoids).

In a span A←X →B, think of X as a space of histories; intuitively s and
t pick the starting and terminating configuration in spaces A and B.
Fact: There’s an induced map: A0(−,G ) : nCob→Span(Gpd), where
the legs of the span are restriction to the boundary.
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Definition

An n-dimensional Topological Quantum Field Theory is a monoidal functor

Z : nCob→Hilb

where nCob has

Objects: (n − 1)-dimensional manifolds

Arrows: n-dimensional cobordisms (manifolds with boundary, with
∂M a union of source and target objects)

So Z assigns Hilbert spaces to manifolds, linear maps to cobordisms (think
of these as “spacetimes” connecting “space slices”). To a closed manifold,
it assigns the partition function Z (M).
We get a TQFT ZG from A0(−,G ) using:

D : Span(Gpd)→ Hilb

(Baez/Dolan “degroupoidification”)
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For a groupoid A, assign the vector space of equivariant functions on the
objects of A (or functions on isomorphism classes of A).
The standard inner product on D(G ) makes the δ[a] orthogonal with

length 1
# Aut(a) . (For various good reasons.)

Then there is a pair of linear maps associated to a groupoid
homomorphism f : A→B:

f ∗ : CB→CA, with f ∗(g) = g ◦ f

f∗ : CA→CB , adjoint to f ∗

These adjoint maps “pull” and “push” functions.
Then for a span we get a “pull-push” map:

D(X , s, t)(g)([b]) =
∑

[x]∈t−1(b)

# Aut(b)

# Aut(x)
[g(s(x))]

(If a history x carries an action S(x), we can modify this sum.)
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Motivation: A TQFT assigns a number Z (M) ∈ C to a closed
n-manifold, and a Hilbert space Z (B) ∈ Hilb to a codimension-1
boundary. What does it assign in codimension 2, 3... and to a point?

Starting point:

Definition

An Extended (Topological) Field Theory is a monoidal 2-functor

Z : nCob2→ 2Hilb

where nCob2 has

Objects: (n − 2)-dimensional manifolds

Arrows: (n − 1)-cobordisms

2-Cells: n-cobordisms with corners
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We can say roughly:

Definition

A 2-Hilbert space (cf. Baez) is an abelian H?-category.

That is, 2-Hilbert spaces have:

a “direct sum” ⊕
hom(x , y) ∈ Hilb for objects x and y

a “star structure”:

hom(x , y) ∼= (hom(y , x))∗

which we think of as finding the “adjoint of an arrow”.

A 2-linear map is a functor preserving all this structure.
There are natural transformation between 2-linear maps.
These form the 2-category 2Hilb.
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Conjecture (Baez/Baratin/Freidel/Wise)

Any 2-Hilbert space is of the following form: Rep(A), the category of
representations of a von Neumann algebra A on Hilbert spaces. The star
structure takes the adjoint of a map.

Example

The 1-dimensional 2-Hilbert space is the category Hilb = Rep(C).

Example

If B is a finite groupoid, the Rep(B) is a 2-Hilbert space, since C[B] is a
von Neumann algebra.

The “basis elements” (generators) of Rep(B) are labeled by ([b],V ),
where [b] is an iso. class of objects in B and V an irreducible rep of
Aut(b).
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To get an ETQFT, use the fact that cobordisms are actually cospans of
manifolds (with corners):

nCob2 Span2(ManCorn)

S1
iA //

i1

��

(A
∐

D)

ι1

��

S1
∐

S1
i ′A⊗iD
oo

i2

��

Y
ι3 // M Y

ι4oo

S1
∐

S1
i2

//

i2

OO

Y

ι2

OO

S1

i1

OO

i1
oo

Applying A0(−,G ) to this gives spans of spans of groupoids.

Jeffrey C. Morton (IST) Extended Field Theories and Higher Gauge Theory QG Zurich June ’11 10 / 24



The bicategory Span2(Gpd) has:

Definition (Part 1)

Objects: Groupoids

Arrows: Spans of groupoids

Composition defined by “weak pullback” (a kind of gluing):

tensor product from the product in Gpd

2-cells (iso. classes of) spans of span maps:

X
s

~~~~~~~~~~
t

  
AAAAAAAA

A Y //oo

σ

OO

τ

��

B

X ′
s′

``@@@@@@@@ t′

>>~~~~~~~~
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Theorem

If X and B are (reasonably nice) groupoids, a functor f : X→B gives a
pair of 2-linear maps:

f ∗ : Λ(B)→Λ(X)

with f ∗F = F ◦ f and (the restricted representation along f )

f∗ : Λ(X)→Λ(B)

the induced representation of F along f .

These are “adjoints” in the sense of maps between 2-Hilbert spaces. (The
“inner product” is 〈x , y〉 = hom(x , y) ∈ Hilb, which takes values in the
1-dimensional 2-Hilbert space!)
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In fact, the map f∗ acts by:

f∗(F )(b) ∼=
∫ ⊕
f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

(a direct sum/integral of induced representations), or also:

f!(F )(b) ∼=
∫ ⊕

[x]|f (x)∼=b
homC[Aut(x)](C[Aut(b)],F (x))

via the canonical Nakayama isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map (which uses a modified group average in
each factor):

N :

∫ ⊕
[x]|f (x)∼=b

φx 7→
∫ ⊕

[x]|f (x)∼=b

1

vol(Aut(x))

∫
g∈Aut(b)

g ⊗ φx(g−1)
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The above can be summarized by saying f ∗ and f∗ are “ambidextrous
adjoints”. There are maps between F (x) and f∗f

∗F (x):

ηR(G )(x) : v 7→
∫ ⊕
y |f (y)∼=x

(g 7→ g(v))

εL(G )(x) :

∫ ⊕
[y ]|f (y)∼=x

gy ⊗ v 7→
∫

[y ]|f (y)∼=x
f (gy )v

Use these to “pull” and “push” through the 2-cells:

X
s

~~~~~~~~~~
t

  
AAAAAAAA

A Y //oo

σ

OO

τ
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B

X ′
s′
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Definition

Define the 2-functor Λ

Λ : Span2(Gpd)→ 2Hilb

as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]

Arrows Λ(X , s, t) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)

2-Cells: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

Remark: The effect on arrows and 2-cells are both “pull-push” processes,
of representations and intertwiners, respectively. When A and B are both
1 (so Rep(A = Hilb), this is exactly the Baez/Dolan degroupoidification
(so gives the same TQFT).
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Physically, A = C[B] is the algebras of symmetries of a system with
configuration groupd B.

The algebra of observables will be its commutant - (which depends
on the choice of representation!)

Basis elements are irreducible representations of the vN algebra -
physically, these can be interpreted as superselection sectors. Any
representation is a direct sum/integral of these.

Then 2-linear maps are functors... given by tensoring with Hilbert
bimodules between algebras. (When groupoids are trivial, this is a
C− C Hilbert bimodule: a Hilbert space.)

The simple components of these bimodules are built from the matrix
entries

Λ(X , s, t)([a],V ),([b],W ) '
∫ ⊕

[x]∈(s,t)−1([a],[b])
hom(s∗(V ), t∗(W )) (1)

(by tensoring on left and right with V and W )
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Example

Interesting case is G = SU(2). The topology generates measurable sets to
make SU(2) a regular Borel space, with Haar measure µ.
The groupoid

G = ASU(2)(S1) = SU(2)//SU(2)

gets a measure from Haar measure on SU(2) (to define the groupoid von
Neumann algebra).
We can get reps of G by integrating those indexed by ([g ],V ) for
g ∈ SU(2) and V an irrep of Stab(g) (SU(2) or U(1)).
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Higher gauge theory: for a 2-group G, define a 3-functor
ZG : nCob3→ 3Hilb.

Definition

A 2-group is a 2-category with one object, and all arrows and 2-cells
invertible.

But concretely, they’re realized by crossed modules, which have:

Groups G , H

A map ∂ : H → G

An action G B H

Satisfying some relations.

Example

The Poincaré 2-Group has G = SO(3, 1), H = R3,1, partial = 1 (the
constant map), and G B H in the canonical way.

Think of H as the group of automorphisms of 1 ∈ G .
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Definition

Fixing a 2-group G, the contravariant 2-functor

A(2)
0 = 2Fun[Π2(−),G]

assigns to a manifold M the 2-groupoid A(2)
0 (M) with:

Objects: 2-functors (“2-connections”)

Arrows: natural transformations (“gauge transformations”)

2-Cells: modifications (...)

A 2-connection defines holonomies along paths and surfaces, valued in
parts of the 2-group.
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There’s an induced map Span3(ManCorn)→Span3(2Gpd), where
Span3(−) has, as 3-cells, equivalence classes of diagrams shaped like:

•

•

•

• •
•

•
ggOO

''OO

TT*********

��������

GG������

��
*********yyrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLL

eeLLLLLLLLLLLLLL

99rrrrrrrrrrrrrr

(2)

Composition is again by weak pullback. (Note that 2-cells and 3-cells of
2Gpd can appear in Span3(2Gpd) by weakening the assumption that this
commutes.)

As before, nCob3 lives in Span3(ManCorn).
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We would like to define an extended TQFT via a 3-functor:

Λ(2) : Span3(2Gpd)→ 3Hilb

using an extended version of the “pull-push” construction.

Objects: Λ(2)(X ) = Rep(X )

Arrows: Pull-push 2-group representations (where push is “induced
2-group representation along F”)

2-Cells: Pull-push 1-intertwiners

3-Cells: Pull-push of “2-intertwiners”

(Though note the definition of 3Hilb is still somewhat unclear. But
Rep(X ) should certainly be an example.)
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Irreducible representations of 2-groupoid G should be labelled by:

A class [y ] of object in G
An irreducible representation of the 2-group Aut(y)

Theorem (BBFW)

An irreducible representation of a 2-group given by (G ,H,C, ∂) is
described by:

An space X , with action X C G of the group of objects

A G -equivariant field of H-characters on X (supported on an orbit of
X C G
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Eventually: One hopes this pattern will repeat with representations of
n-groupoids for all n.
Then we can say what the field theory “assigns to a point”.

Note: For 2-groups, we have irreducible representations, but also
irreducible intertwiners.

Puzzle: If an irreducible group(oid) representation is a superselection
sector, what is an irreducible 2-group(oid) representation?
(Guess: a sector for a theory on the boundary of the codimension-3
surfaces. Irreducible intertwiners should define sectors for the
codimension-2 surfaces.)
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