Extended Field Theories and Higher Gauge Theory

Jeffrey C. Morton

Instituto Superior Técnico

Quantum Theory and Gravitation - Zurich ETH - June 2011

Context: "Categorify" quantum mechanical description of states and processes.

We propose to represent:

- configuration spaces of physical systems by *n*-groupoids (or *n*-stacks), based on local symmetries
- process relating two systems through time by a span of groupoids, including a groupoid of "histories"
- higher spans for composition of systems

This can be represented in **Hilb** by "degroupoidification" (Baez/Dolan). We'll look for "higher" analogs.

Definition

A groupoid G is a category in which all arrows are invertible.

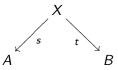
- Any group G is a groupoid with one object
- Given a set S with a group-action G × S → S yields a transformation groupoid S // G whose objects are elements of S; if g(s) = s' then there is an arrow g_s : s → s'
- "Physical" applications of groupoids arise mostly from $S /\!\!/ G$ associated to a *G*-action on *S* is a space of configurations.
- Morita equivalent groupoids are "physically indistinguishable". (E.g. full action groupoid; quotient with automorphisms)

Example

Moduli space for gauge theory, for (finite) gauge group G. Given M, the groupoid $\mathcal{A}_0(M, G) = hom(\pi_1(M), G)/\!\!/ G$ has:

- **Objects**: Flat connections on *M*
- Arrows Gauge transformations

A span of groupoids is a diagram:



whose arrows are groupoid homomorphisms (i.e. functors between groupoids).

In a span $A \leftarrow X \rightarrow B$, think of X as a space of *histories*; intuitively *s* and *t* pick the starting and terminating configuration in spaces A and B. **Fact**: There's an induced map: $A_0(-, G) : \mathbf{nCob} \rightarrow Span(\mathbf{Gpd})$, where the legs of the span are *restriction to the boundary*.

Definition

An n-dimensional Topological Quantum Field Theory is a monoidal functor

$Z: \mathbf{nCob} \rightarrow \mathbf{Hilb}$

where **nCob** has

- **Objects**: (*n* 1)-dimensional manifolds
- Arrows: *n*-dimensional cobordisms (manifolds with boundary, with ∂M a union of source and target objects)

So Z assigns Hilbert spaces to manifolds, linear maps to cobordisms (think of these as "spacetimes" connecting "space slices"). To a closed manifold, it assigns the *partition function* Z(M). We get a TQFT Z_G from $A_0(-, G)$ using:

$D: Span(\mathbf{Gpd}) \rightarrow \mathbf{Hilb}$

(Baez/Dolan "degroupoidification")

For a groupoid **A**, assign the vector space of *equivariant functions* on the objects of **A** (or functions on *isomorphism classes* of **A**). The standard inner product on D(G) makes the $\delta_{[a]}$ orthogonal with length $\frac{1}{\# \operatorname{Aut}(a)}$. (For various good reasons.) Then there is a pair of linear maps associated to a groupoid homomorphism $f: A \to B$:

•
$$f^*:\mathbb{C}^B\!
ightarrow\!\mathbb{C}^A$$
, with $f^*(g)=g\circ f$

•
$$f_*: \mathbb{C}^A \to \mathbb{C}^B$$
, adjoint to f^*

These adjoint maps "pull" and "push" functions. Then for a span we get a "pull-push" map:

$$D(X, s, t)(g)([b]) = \sum_{[x] \in \underline{t^{-1}(b)}} \frac{\# \operatorname{Aut}(b)}{\# \operatorname{Aut}(x)} [g(s(x))]$$

(If a history x carries an action S(x), we can modify this sum.)

Motivation: A TQFT assigns a number $Z(M) \in \mathbb{C}$ to a closed *n*-manifold, and a Hilbert space $Z(B) \in \text{Hilb}$ to a codimension-1 boundary. What does it assign in codimension 2, 3... and to a point?

Starting point:

Definition

An Extended (Topological) Field Theory is a monoidal 2-functor

 $Z: \mathbf{nCob_2} \to \mathbf{2Hilb}$

where $nCob_2$ has

- **Objects**: (n-2)-dimensional manifolds
- Arrows: (n-1)-cobordisms
- 2-Cells: n-cobordisms with corners

We can say roughly:

Definition

A 2-Hilbert space (cf. Baez) is an abelian H^* -category.

That is, 2-Hilbert spaces have:

- ullet a "direct sum" \oplus
- $hom(x, y) \in Hilb$ for objects x and y
- a "star structure":

$$\mathsf{hom}(x,y) \cong (\mathsf{hom}(y,x))^*$$

which we think of as finding the "adjoint of an arrow".

A **2-linear map** is a functor preserving all this structure. There are **natural transformation** between 2-linear maps. These form the 2-category **2Hilb**.

Conjecture (Baez/Baratin/Freidel/Wise)

Any 2-Hilbert space is of the following form: **Rep(A)**, the category of representations of a von Neumann algebra A on Hilbert spaces. The star structure takes the adjoint of a map.

Example

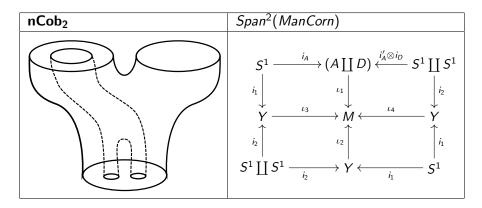
The 1-dimensional 2-Hilbert space is the category $Hilb = Rep(\mathbb{C})$.

Example

If **B** is a finite groupoid, the Rep(B) is a 2-Hilbert space, since $\mathbb{C}[B]$ is a von Neumann algebra.

The "basis elements" (generators) of **Rep(B)** are labeled by ([b], V), where [b] is an iso. class of objects in **B** and V an irreducible rep of Aut(b).

To get an ETQFT, use the fact that cobordisms are actually **co**spans of manifolds (with corners):

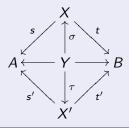


Applying $\mathcal{A}_0(-, G)$ to this gives spans of spans of groupoids.

The bicategory Span₂(**Gpd**) has:

Definition (Part 1)

- Objects: Groupoids
- Arrows: Spans of groupoids
- Composition defined by "weak pullback" (a kind of gluing):
- tensor product from the product in Gpd
- 2-cells (iso. classes of) spans of span maps:



Theorem

If **X** and **B** are (reasonably nice) groupoids, a functor $f : \mathbf{X} \to \mathbf{B}$ gives a pair of 2-linear maps:

$$f^*: \Lambda(\mathbf{B}) \to \Lambda(\mathbf{X})$$

with $f^*F = F \circ f$ and (the restricted representation along f)

$$f_*: \Lambda(\mathbf{X}) \rightarrow \Lambda(\mathbf{B})$$

the induced representation of F along f.

These are "adjoints" in the sense of maps between 2-Hilbert spaces. (The "inner product" is $\langle x, y \rangle = hom(x, y) \in Hilb$, which takes values in the 1-dimensional 2-Hilbert space!)

In fact, the map f_* acts by:

$$f_*(F)(b)\cong \int_{f(x)\cong b}^\oplus \mathbb{C}[\operatorname{Aut}(b)]\otimes_{\mathbb{C}[\operatorname{Aut}(x)]}F(x)$$

(a direct sum/integral of induced representations), or also:

$$f_{i}(F)(b) \cong \int_{[x]|f(x)\cong b}^{\oplus} \hom_{\mathbb{C}[Aut(x)]}(\mathbb{C}[Aut(b)], F(x))$$

via the canonical Nakayama isomorphism:

$$N_{(f,F,b)}: f_!(F)(b) \rightarrow f_*(F)(b)$$

given by the *exterior trace map* (which uses a modified group average in each factor):

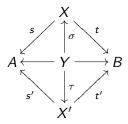
$$N: \int_{[x]|f(x)\cong b}^{\oplus} \phi_x \mapsto \int_{[x]|f(x)\cong b}^{\oplus} \frac{1}{\operatorname{vol}(\operatorname{Aut}(x))} \int_{g\in\operatorname{Aut}(b)} g\otimes \phi_x(g^{-1})$$

The above can be summarized by saying f^* and f_* are "ambidextrous adjoints". There are maps between F(x) and $f_*f^*F(x)$:

$$\eta_R(G)(x): v \mapsto \int_{y|f(y)\cong x}^{\oplus} (g \mapsto g(v))$$

$$\epsilon_L(G)(x): \int_{[y]|f(y)\cong x}^{\oplus} g_y \otimes v \mapsto \int_{[y]|f(y)\cong x} f(g_y)v$$

Use these to "pull" and "push" through the 2-cells:



Definition

Define the 2-functor Λ

 $\Lambda : Span_2(\mathbf{Gpd}) \rightarrow \mathbf{2Hilb}$

as follows:

- Objects: $\Lambda(\mathbf{B}) = Rep(\mathbf{B}) := [\mathbf{B}, \mathbf{Vect}]$
- Arrows $\Lambda(X, s, t) = t_* \circ s^* : \Lambda(\mathbf{A}) \longrightarrow \Lambda(\mathbf{B})$
- 2-Cells: $\Lambda(Y, \sigma, \tau) = \epsilon_{L,\tau} \circ N \circ \eta_{R,\sigma} : (t)_* \circ (s)^* \rightarrow (t')_* \circ (s')^*$

Remark: The effect on arrows and 2-cells are both "pull-push" processes, of representations and intertwiners, respectively. When **A** and **B** are both 1 (so $Rep(\mathbf{A} = \mathbf{Hilb})$, this is *exactly* the Baez/Dolan degroupoidification (so gives the same TQFT).

- Physically, $A = \mathbb{C}[\mathbf{B}]$ is the algebras of **symmetries** of a system with configuration groupd **B**.
- The algebra of **observables** will be its commutant (which depends on the choice of representation!)
- Basis elements are irreducible representations of the vN algebra physically, these can be interpreted as **superselection sectors**. Any representation is a *direct sum/integral* of these.
- The simple components of these bimodules are built from the matrix entries

$$\Lambda(X, s, t)_{([a], V), ([b], W)} \simeq \int_{[x] \in \underline{(s, t)^{-1}([a], [b])}}^{\oplus} \hom(s^*(V), t^*(W)) \quad (1)$$

(by tensoring on left and right with V and W)

Example

Interesting case is G = SU(2). The topology generates measurable sets to make SU(2) a regular Borel space, with Haar measure μ . The groupoid

$$G = A_{SU(2)}(S^1) = SU(2) / SU(2)$$

gets a measure from Haar measure on SU(2) (to define the groupoid von Neumann algebra).

We can get reps of \mathcal{G} by integrating those indexed by ([g], V) for $g \in SU(2)$ and V an irrep of Stab(g) (SU(2) or U(1)).

Higher gauge theory: for a 2-group \mathcal{G} , define a 3-functor $Z_{\mathcal{G}}$: $\mathbf{nCob}_3 \rightarrow \mathbf{3Hilb}$.

Definition

A 2-group is a 2-category with one object, and all arrows and 2-cells invertible.

But concretely, they're realized by crossed modules, which have:

- Groups G, H
- A map $\partial: H \to G$
- An action $G \triangleright H$

Satisfying some relations.

Example

The **Poincaré 2-Group** has G = SO(3, 1), $H = R^{3,1}$, partial = 1 (the constant map), and $G \triangleright H$ in the canonical way.

Think of *H* as the group of *automorphisms of* $1 \in G$.

Definition

Fixing a 2-group \mathcal{G} , the contravariant 2-functor

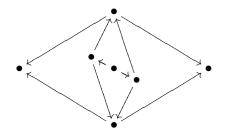
 $\mathcal{A}_0^{(2)} = 2 \textit{Fun}[\Pi_2(-), \mathcal{G}]$

assigns to a manifold *M* the 2-groupoid $\mathcal{A}_0^{(2)}(M)$ with:

- Objects: 2-functors ("2-connections")
- Arrows: natural transformations ("gauge transformations")
- 2-Cells: modifications (...)

A 2-connection defines holonomies along paths *and surfaces*, valued in parts of the 2-group.

There's an induced map $Span_3(ManCorn) \rightarrow Span_3(2Gpd)$, where $Span_3(-)$ has, as 3-cells, equivalence classes of diagrams shaped like:



(2)

Composition is again by weak pullback. (Note that 2-cells and 3-cells of **2Gpd** can appear in $Span_3(2Gpd)$ by weakening the assumption that this commutes.)

As before, $nCob_3$ lives in $Span^3$ (ManCorn).

We would like to define an extended TQFT via a 3-functor:

 $\Lambda^{(2)}: Span_3(\mathbf{2Gpd}) \rightarrow \mathbf{3Hilb}$

using an extended version of the "pull-push" construction.

• **Objects**:
$$\Lambda^{(2)}(\mathcal{X}) = Rep(\mathcal{X})$$

- Arrows: Pull-push 2-group representations (where push is "induced 2-group representation along \mathcal{F} ")
- 2-Cells: Pull-push 1-intertwiners
- 3-Cells: Pull-push of "2-intertwiners"

(Though note the definition of **3Hilb** is still somewhat unclear. But $Rep(\mathcal{X})$ should certainly be an example.)

Irreducible representations of 2-groupoid $\mathcal G$ should be labelled by:

- A class [y] of object in $\mathcal G$
- An irreducible representation of the 2-group Aut(y)

Theorem (BBFW)

An irreducible representation of a 2-group given by $(G, H, \triangleleft, \partial)$ is described by:

- An space X, with action $X \lhd G$ of the group of objects
- A G-equivariant field of H-characters on X (supported on an orbit of $X \lhd G$

Eventually: One hopes this pattern will repeat with representations of *n*-groupoids for all *n*.

Then we can say what the field theory "assigns to a point".

Note: For 2-groups, we have irreducible *representations*, but also irreducible *intertwiners*.

Puzzle: If an irreducible group(oid) representation is a superselection sector, what is an irreducible 2-group(oid) representation? (Guess: a sector for a theory on the boundary of the codimension-3 surfaces. Irreducible intertwiners should define sectors for the codimension-2 surfaces.)