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Motivation: Categorify a quantum mechanical description of states and

processes.
Applications Foundational physics such as quantum harmonic oscillator;
Witten-type ETQFT (help interpret physical examples).

Categorification involves replacing set-based structures with
category-based structures. That is, by replacing the category Set with the
2-category Cat (or SmallCat). There are two obvious approaches to how
the original structure reappears (apart from “by analogy”):

@ "Quotient”: from the object/morphism level (Grothendieck ring - e.g.
categorified sl3)

@ “Substructure”: At the morphism/2-morphism level (the “microcosm
principle”)

There are more possibilities when going to n-categories.
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The following is an example of the last type:

Theorem

There is a 2-functor ( “2-linearization” ):

A : Spany(Gpd) — 2Vect

This is a categorification (sense 2) of the “degroupoidification” functor

D : Spani(Gpd) — Vect of Baez and Dolan (which itself gives an example
of sense 1!)

A span in a (n-)category C is a diagram:
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The bicategory Spany(Gpd) (similar for any 2-category with weak
pullbacks) has:
Definition

@ Objects: Groupoids

@ Morphisms: Spans of groupoids

@ Composition defined by weak pullback:

X' o X

@ 2-Morphisms : isomorphism classes of spans of span maps
@ monoidal structure from the product in Gpd, monoidal unit 1

(The category Span(Gpd) takes spans up to span-isomorphism)
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Definition
D : Span(Gpd) — Vect
with D(G) = C(G),
OGIEIED D < {EC)
[x]et—1(b)

This amounts to multiplication by a matrix D(X) with

D(X)(tal,fe)) = I(5, 1) (a, b)|

using groupoid cardinality (which can be interpreted as an inner product in
a canonical way).

(Note: Compare gpd. cardinality to role of Euler characteristic in geom.
representation theory.)

D is a “quotient-style” decategorification map.
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Definition (Part 2)

The 2-morphisms of Spany(Gpd) are (iso. classes of) spans of span

SN

Acs——Y —B

ENA

X/

Composition is by weak pullback taken up to isomorphism.

(Often one just uses span maps: here, we want 2-morphisms as well as
morphisms to have adjoints, so much use these.)
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Definition
2Vect is the 2-category of Kapranov-Voevodsky 2-vector spaces, which
consists of:

@ Objects: Kapranov—Voevodsky 2-vector spaces: C-linear finitely
semisimple additive category (one generated by simple objects x,
where hom(x, x) = C).

@ Morphisms: 2-linear maps: C-linear (hence additive) functor.

@ 2-Morphisms: Natural transformations between 2-linear maps

Note: 2Vect is a monoidal 2-category with the Deligne product and unit
Vect.

Theorem (KV)

Any KV 2-vector space is equivalent to Vlect® for some k. Any 2-linear
map is then naturally isomorphic to one given by a matrix of vector spaces
(and matrix multiplication using ® and @). Any natural transformation of
2-linear maps is then given by a matrix of componentwise linear maps.

Jeffrey C. Morton (U.W.O.) Faro Jul 2010 7/21



Lemma

If B is an essentially finite groupoid, the functor category
A(B) = [B, Vect] is a KV 2-vector space.

Note: If the automorphism groups of (isomorphism classes of ) objects of
B are Bs,..., By, then we have

[B, Vect] = H Rep(B;)

So the "basis elements” (simple objects) in [B, Vect] are labeled by
([6], V), where [b] € B and V an irreducible rep of Aut(b).
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Theorem

If X and B are essentially finite groupoids, a functor f : X — B gives two
2-linear maps:

*: N(B) — A(X)
namely composition with f, with f*F = F o f and
f - N(X) — A(B)

called “pushforward along f”. Furthermore, f, is the two-sided adjoint to
f* (i.e. both left-adjoint and right-adjoint).

In fact, the adjoint map . acts by:

L(F)(b) = @D ClAut(b)] Rciaur(xy F(x)
f(x)2b

This is the left adjoint. But there is also a right adjoint:

A(F)(b) = D homepau()(ClAut(b)], F(x))
[xIIf(x)=b

Jeffrey C. Morton (U.W.O.)

2-Linearization In Physics and Topology

Faro Jul 2010 9/21



The Nakayama isomorphism is a canonical isomorphism between these (in
particular: it defines an isomorphism even over base rings other than C).
It gives maps:

Nit,F by = fi(F)(b) — f.(F)(b)

given by the exterior trace map in each factor of the sum (which uses a
modified group average):

N: D o~ D ey Z g0 dx(gh)

X1 (x)=b (X1 (x)=b gGAuf(b)

Under this identification, the left and right adjoints are isomorphic. By
composing units/counits with N, we get that f* and f, are ambidextrous
adjoints.

(Note: In general, Span(C) will be the universal 2-category for which
morphisms in C have ambidextrous adjoints. We want to preserve this

property.)
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Call the adjunctions in which f, is left or right adjoint to f* the left and
right adjunctions respectively. We want to use the counit for the left
adjunction, which is the evaluation map:

mR(G)(x):G(x)  — €D homepau)(ClAut(y)], G(x))

yIf(y)=x

v - P E@—av)

ylf(y)=x

and the unit for the right adjunction, which just uses the action:

w(G)x): @ ClAut(x)] Scrau() FFG(x) —G6(x)

V]If(y)=x
@ 8y Qv — Z f(gy)v
]I (y)=x ]IF(y)=x
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Definition
Define the 2-functor A as follows:
@ Objects: A(B) = Rep(B) := [B, Vect]
e Morphisms A(X,s,t) = t, os* : A(a) — A(B)
@ 2-Morphisms: A(Y,0,7) =€ ;0 Nongy : (t)s o (s)* —(t') o (s)*

v

Picking basis elements ([a], V') € A(A), and ([b], W) € A(B), we get that
A(X,s, t) is represented by the matrix with coefficients:

ANX,s, t)( ),([b], W) = homRep(Aut(b))(t* os*(V), W)

~ hom rep(Aut(x)) (s*(V), t*(W))
[x]e(s,t)~1([a],[b])

This is an intertwiner space, given by the analog of an inner product. The
2-morphisms give linear maps between intertwiner spaces, which can also
be interpreted as a “pull-push” operation.
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In the case where source and target are 1, there is only one basis object in
A(1) (the trivial representation), so the 2-linear maps are represented by a
single vector space. Then it turns out:

Theorem
Restricting to homsyan,(Gpa)(1,1):

A

1 /sl\ 1
%

B

where 1 is the (terminal) groupoid with one object and one morphism, A
on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in .
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2-Linearized Physics

“Physical” applications arise because groupoids provide a good way of
thinking about local symmetry, generalizing the action groupoid S/ G
associated to a G-action on S.

In a span A«— X — B, the groupoid X will represent a space of histories; s
and t pick the starting and terminating configuration in spaces A and B.

This setup is how we “do physics in” the monoidal (2-)category
Spany(Gpd). The functors D and A will give a description of physics in
Vect (really, Hilb since there is a canonical inner product), and 2Vect
respectively (ditto).

The span Vect < Spany(Gpd) — 2Vect provides a way to “categorify
quantum mechanics”.
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Example
An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCoby — 2Vect

where nCobs has
@ Objects: (n — 2)-dimensional manifolds

@ Morphisms: (n — 1)-dimensional cobordisms (manifolds with
boundary, with M a union of source and target objects)

@ 2-Morphisms: n-dimensional cobordisms with corners

One construction uses gauge theory, for gauge group G (here a finite
group). Given M, the groupoid Ag(M, G) = hom(mw1(M), G)//G has:

@ Objects: Flat connections on M
@ Morphisms Gauge transformations

Then Ag(—, G) : nCoby — Spany(Gpd), and there is an ETQFT
Zg =NoAo(—, G).
It happens to give the Dijkgraaf-Witten model when n = 3.
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This relies on the fact that cobordisms in nCoby can be transformed into
products of cospans:

nCob; Span®(Top)

Then Ao(—, G) maps these into Span®(Gpd).
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Example

In the case where A = B = FinSetg (equivalently, the symmetric groupoid
[1,50 X - note no longer finite), we find

D(FinSetg) = C[[t]]

where t" marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).

The operators a = 9; and af = M,, generate the Wey/ algebra of
operators for the QHO. These are given under D by the span A:

FinSetg

FinSet FinSet

and its dual Af. Composites of these give a categorification of operators
explicitly in terms of Feynman diagrams.
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Such composites are described in terms of groupoids whose objects look
like this:

The source and target maps for the span pick the set of start and end
points. The morphisms of the groupoid are graph symmetries.
Degroupoidification D calculates operators which (after small modification

involving U(1)-labels) agree with the usual Feynman rules for calculating
amplitudes.
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An ongoing project (with Jamie Vicary) is to study the 2-categorical
version of this picture. There are analogs of creation and annihilation
operators in other hom-categories than hom(1,1):

FinSetg
%*}T \‘

FinSetg <—— FinSety Ry FinSetg

U{*,*} }
N f{ /

FinSetg

This is a 2-morphism a4 : A— AAAT creates a “creation /annihilation
pair’ at the 1-morphism level.

Composites of these act as rewrite rules on the Feynman diagrams like
those seen previously (now with “boundary” maps).
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The image of this picture under A involves representation theory of the
symmetric groups as A(FinSetg) = [], Rep(X,), and gives rise to
“paraparticle statistics”:
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Toward Real QFT

Both the QHO and TQFT are “baby” models of real QFT, which is much
harder.

One ingredient: the construction for A can be extended to
measure-groupoids (e.g. derived from compact Lie groups w/ Haar
measure), using:

Vect — Hilb (ambiadjoint uses double-dual isomorphism)

Rep(B) — Category of reps of von Neumann algebra associated to B
2-linear maps represented by Hilbert bimodules

Direct sum — direct integral

Groupoid cardinality — volume of groupoid (c.f. Weinstein)

This relates to a conjecture of Baez et. al. that infinite-dimensional
2-Hilbert spaces are equivalent to representation categories for
v.N.-algebras.
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