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Motivation: Categorify a quantum mechanical description of states and
processes.
Applications Foundational physics such as quantum harmonic oscillator;
Witten-type ETQFT (help interpret physical examples).
Categorification involves replacing set-based structures with
category-based structures. That is, by replacing the category Set with the
2-category Cat (or SmallCat). There are two obvious approaches to how
the original structure reappears (apart from “by analogy”):

1 “Quotient”: from the object/morphism level (Grothendieck ring - e.g.
categorified sl2)

2 “Substructure”: At the morphism/2-morphism level (the “microcosm
principle”)

There are more possibilities when going to n-categories.
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The following is an example of the last type:

Theorem

There is a 2-functor (“2-linearization”):

Λ : Span2(Gpd)→ 2Vect

This is a categorification (sense 2) of the “degroupoidification” functor
D : Span1(Gpd)→Vect of Baez and Dolan (which itself gives an example
of sense 1!)
A span in a (n-)category C is a diagram:
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The bicategory Span2(Gpd) (similar for any 2-category with weak
pullbacks) has:

Definition

Objects: Groupoids

Morphisms: Spans of groupoids

Composition defined by weak pullback:

X ′ ◦ X
S
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2-Morphisms : isomorphism classes of spans of span maps

monoidal structure from the product in Gpd, monoidal unit 1

(The category Span(Gpd) takes spans up to span-isomorphism)
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Definition

D : Span(Gpd)→ Vect

with D(G ) = C(G ),

D(X )(f )([b]) =
∑

[x]∈t−1(b)

# Aut(b)

# Aut(x)
[f (s(x))]

This amounts to multiplication by a matrix D(X ) with

D(X )([a],[b]) = |(s, t)−1(a, b)|

using groupoid cardinality (which can be interpreted as an inner product in
a canonical way).
(Note: Compare gpd. cardinality to role of Euler characteristic in geom.
representation theory.)
D is a “quotient-style” decategorification map.
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Definition (Part 2)

The 2-morphisms of Span2(Gpd) are (iso. classes of) spans of span
maps:

X
s

~~~~~~~~~~
t
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A Y //oo
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s′
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>>~~~~~~~~

Composition is by weak pullback taken up to isomorphism.

(Often one just uses span maps: here, we want 2-morphisms as well as
morphisms to have adjoints, so much use these.)
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Definition

2Vect is the 2-category of Kapranov-Voevodsky 2-vector spaces, which
consists of:

Objects: Kapranov–Voevodsky 2-vector spaces: C-linear finitely
semisimple additive category (one generated by simple objects x ,
where hom(x , x) ∼= C).

Morphisms: 2-linear maps: C-linear (hence additive) functor.

2-Morphisms: Natural transformations between 2-linear maps

Note: 2Vect is a monoidal 2-category with the Deligne product and unit
Vect.

Theorem (KV)

Any KV 2-vector space is equivalent to Vectk for some k. Any 2-linear
map is then naturally isomorphic to one given by a matrix of vector spaces
(and matrix multiplication using ⊗ and ⊕). Any natural transformation of
2-linear maps is then given by a matrix of componentwise linear maps.
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Lemma

If B is an essentially finite groupoid, the functor category
Λ(B) = [B,Vect] is a KV 2-vector space.

Note: If the automorphism groups of (isomorphism classes of) objects of
B are B1, . . . ,Bn, then we have

[B,Vect] ∼=
∏
j

Rep(Bj)

So the “basis elements” (simple objects) in [B,Vect] are labeled by
([b],V ), where [b] ∈ B and V an irreducible rep of Aut(b).
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Theorem

If X and B are essentially finite groupoids, a functor f : X→B gives two
2-linear maps:

f ∗ : Λ(B)→Λ(X)

namely composition with f , with f ∗F = F ◦ f and

f∗ : Λ(X)→Λ(B)

called “pushforward along f ”. Furthermore, f∗ is the two-sided adjoint to
f ∗ (i.e. both left-adjoint and right-adjoint).

In fact, the adjoint map f∗ acts by:

f∗(F )(b) ∼=
⊕

f (x)∼=b

C[Aut(b)]⊗C[Aut(x)] F (x)

This is the left adjoint. But there is also a right adjoint:

f!(F )(b) ∼=
⊕

[x]|f (x)∼=b

homC[Aut(x)](C[Aut(b)],F (x))
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The Nakayama isomorphism is a canonical isomorphism between these (in
particular: it defines an isomorphism even over base rings other than C).
It gives maps:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

given by the exterior trace map in each factor of the sum (which uses a
modified group average):

N :
⊕

[x]|f (x)∼=b

φx 7→
⊕

[x]|f (x)∼=b

1

#Aut(x)

∑
g∈Aut(b)

g ⊗ φx(g−1)

Under this identification, the left and right adjoints are isomorphic. By
composing units/counits with N, we get that f ∗ and f∗ are ambidextrous
adjoints.
(Note: In general, Span2(C) will be the universal 2-category for which
morphisms in C have ambidextrous adjoints. We want to preserve this
property.)
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Call the adjunctions in which f∗ is left or right adjoint to f ∗ the left and
right adjunctions respectively. We want to use the counit for the left
adjunction, which is the evaluation map:

ηR(G )(x) :G (x) →
⊕

y |f (y)∼=x

homC[Aut(x)](C[Aut(y)],G (x))

v 7→
⊕

y |f (y)∼=x

(g 7→ g(v))

and the unit for the right adjunction, which just uses the action:

εL(G )(x) :
⊕

[y ]|f (y)∼=x

C[Aut(x)]⊗C[Aut(y)] f ∗G (x) →G (x)

⊕
[y ]|f (y)∼=x

gy ⊗ v 7→
∑

[y ]|f (y)∼=x

f (gy )v
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Definition

Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]

Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(a) −→ Λ(B)

2-Morphisms: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s ′)∗

Picking basis elements ([a],V ) ∈ Λ(A), and ([b],W ) ∈ Λ(B), we get that
Λ(X , s, t) is represented by the matrix with coefficients:

Λ(X , s, t)([a],V ),([b],W ) = homRep(Aut(b))(t∗ ◦ s∗(V ),W )

'
⊕

[x]∈(s,t)−1([a],[b])

homRep(Aut(x))(s∗(V ), t∗(W ))

This is an intertwiner space, given by the analog of an inner product. The
2-morphisms give linear maps between intertwiner spaces, which can also
be interpreted as a “pull-push” operation.
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In the case where source and target are 1, there is only one basis object in
Λ(1) (the trivial representation), so the 2-linear maps are represented by a
single vector space. Then it turns out:

Theorem

Restricting to homSpan2(Gpd)(1, 1):

A
!

����������
!

��
????????

1 X

s

OO

t
��

1

B

!

__???????? !

??��������

where 1 is the (terminal) groupoid with one object and one morphism, Λ
on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in N.
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2-Linearized Physics
“Physical” applications arise because groupoids provide a good way of
thinking about local symmetry, generalizing the action groupoid S//G
associated to a G -action on S .

In a span A←X →B, the groupoid X will represent a space of histories; s
and t pick the starting and terminating configuration in spaces A and B.

This setup is how we “do physics in” the monoidal (2-)category
Span2(Gpd). The functors D and Λ will give a description of physics in
Vect (really, Hilb since there is a canonical inner product), and 2Vect
respectively (ditto).

The span Vect←Span2(Gpd)→ 2Vect provides a way to “categorify
quantum mechanics”.
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Example

An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→ 2Vect

where nCob2 has

Objects: (n − 2)-dimensional manifolds

Morphisms: (n − 1)-dimensional cobordisms (manifolds with
boundary, with ∂M a union of source and target objects)

2-Morphisms: n-dimensional cobordisms with corners

One construction uses gauge theory, for gauge group G (here a finite
group). Given M, the groupoid A0(M,G ) = hom(π1(M),G )//G has:

Objects: Flat connections on M

Morphisms Gauge transformations

Then A0(−,G ) : nCob2→Span2(Gpd), and there is an ETQFT
ZG = Λ ◦ A0(−,G ).
It happens to give the Dijkgraaf-Witten model when n = 3.
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This relies on the fact that cobordisms in nCob2 can be transformed into
products of cospans:

nCob2 Span2(Top)

S1
iA //

i1

��

(A
∐

D)

ι1

��

S1
∐

S1
i ′A⊗iD
oo

i2

��

Y
ι3 // M Y

ι4oo

S1
∐

S1
i2

//

i2

OO

Y

ι2

OO

S1

i1

OO

i1
oo

Then A0(−,G ) maps these into Span2(Gpd).
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Example

In the case where A = B = FinSet0 (equivalently, the symmetric groupoid∐
n≥0 Σn - note no longer finite), we find

D(FinSet0) = C[[t]]

where tn marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).
The operators a = ∂t and a† = Mt , generate the Weyl algebra of
operators for the QHO. These are given under D by the span A:

FinSet0

∪?
xxrrrrrrrrrr

id
&&LLLLLLLLLL

FinSet0 FinSet0

and its dual A†. Composites of these give a categorification of operators
explicitly in terms of Feynman diagrams.
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Such composites are described in terms of groupoids whose objects look
like this:

The source and target maps for the span pick the set of start and end
points. The morphisms of the groupoid are graph symmetries.
Degroupoidification D calculates operators which (after small modification
involving U(1)-labels) agree with the usual Feynman rules for calculating
amplitudes.
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An ongoing project (with Jamie Vicary) is to study the 2-categorical
version of this picture. There are analogs of creation and annihilation
operators in other hom-categories than hom(1, 1):

FinSet0
id

&&LLLLLLLLLL
∪{∗}

xxrrrrrrrrrr

FinSet0 FinSet0

∪{?}

OO

id
��

∪{?}
//

∪{?,∗}
oo FinSet0

FinSet0

∪?

88rrrrrrrrrr∪{?,∗}

ffLLLLLLLLLL

This is a 2-morphism αA : A→AAA† creates a “creation/annihilation
pair” at the 1-morphism level.
Composites of these act as rewrite rules on the Feynman diagrams like
those seen previously (now with “boundary” maps).
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The image of this picture under Λ involves representation theory of the
symmetric groups as Λ(FinSet0) ∼=

∏
n Rep(Σn), and gives rise to

“paraparticle statistics”:

C
��

wwooo
''OOOO

������
��

????
������

��
//

zztttttt
�� zzttttt

�� $$JJJJJJ
��

$$JJJJJJJJ

�����������

�� ���������

��
��

??????

���������

��
???????

�� ��
???????

��������
��

��
?????????
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Toward Real QFT
Both the QHO and TQFT are “baby” models of real QFT, which is much
harder.
One ingredient: the construction for Λ can be extended to
measure-groupoids (e.g. derived from compact Lie groups w/ Haar
measure), using:

Vect 7→ Hilb (ambiadjoint uses double-dual isomorphism)

Rep(B) 7→ Category of reps of von Neumann algebra associated to B

2-linear maps represented by Hilbert bimodules

Direct sum 7→ direct integral

Groupoid cardinality 7→ volume of groupoid (c.f. Weinstein)

This relates to a conjecture of Baez et. al. that infinite-dimensional
2-Hilbert spaces are equivalent to representation categories for
v.N.-algebras.
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