
In 1959 Grothendieck wrote a letter to Serre explaining that in
trying to construct moduli spaces in algebraic geometry he keeps
running into the problem that the underlying data has
automorphisms

A concrete example
Why does the (fine) moduli space of elliptic curves not exist?

Lets work over C.

An elliptic curve is a smooth projective curve of genus 1 with a
marked point.
As a complex manifold such a curve is a compact Riemann surface
of the form C/Λ where Λ is a full sublattice of (C,+)

Lets work over C.
An elliptic curve is a smooth projective curve of genus 1 with a
marked point.

As a complex manifold such a curve is a compact Riemann surface
of the form C/Λ where Λ is a full sublattice of (C,+)

Lets work over C.
An elliptic curve is a smooth projective curve of genus 1 with a
marked point.
As a complex manifold such a curve is a compact Riemann surface
of the form C/Λ where Λ is a full sublattice of (C,+)

What properties would one expect of the moduli space of elliptic
curves?

Lets denote the (non existant) moduli space by M. There should
be a universal family of elliptic curves U→M with the following
universal property:
Given any other family E→ X of elliptic curves then there exists a
unique morphism f : X →M such that f ∗U ∼= E

What properties would one expect of the moduli space of elliptic
curves?
Lets denote the (non existant) moduli space by M. There should
be a universal family of elliptic curves U→M with the following
universal property:

Given any other family E→ X of elliptic curves then there exists a
unique morphism f : X →M such that f ∗U ∼= E

What properties would one expect of the moduli space of elliptic
curves?
Lets denote the (non existant) moduli space by M. There should
be a universal family of elliptic curves U→M with the following
universal property:
Given any other family E→ X of elliptic curves then there exists a
unique morphism f : X →M such that f ∗U ∼= E

This all falls apart when one inspects the family

E = {(x , y , z)|y2 = x(x − 1)(x − z)}.

where E→ A1 \ {0, 1} with (x , y , z) 7→ z .

If we denote the fiber over t by Et then when checks that the
curves Et and E1−t are isomorphic. This implies that the
involution z 7→ 1− z must lift to an involution of E. Some algebra
shows that it can’t.
More conceptually the culprit is the fiber over (1/2). It has an
extra automorphism.

This all falls apart when one inspects the family

E = {(x , y , z)|y2 = x(x − 1)(x − z)}.

where E→ A1 \ {0, 1} with (x , y , z) 7→ z .
If we denote the fiber over t by Et then when checks that the
curves Et and E1−t are isomorphic. This implies that the
involution z 7→ 1− z must lift to an involution of E. Some algebra
shows that it can’t.

More conceptually the culprit is the fiber over (1/2). It has an
extra automorphism.

This all falls apart when one inspects the family

E = {(x , y , z)|y2 = x(x − 1)(x − z)}.

where E→ A1 \ {0, 1} with (x , y , z) 7→ z .
If we denote the fiber over t by Et then when checks that the
curves Et and E1−t are isomorphic. This implies that the
involution z 7→ 1− z must lift to an involution of E. Some algebra
shows that it can’t.
More conceptually the culprit is the fiber over (1/2). It has an
extra automorphism.

Conclusion : To have moduli spaces with all expected properties
one needs a larger category of varieties. To see how one might
construct such a category lets give a functorial characterization of
algebraic varieties and schemes.

Denote by Aff the category of affine schemes. This is just the
opposite category to the category of commutative rings with
identity.

By Yoneda, we have an fully faithfull functor

algebraic varieties ↪→ Functors(Affop,Sets)

One can characterise a variety (really a scheme) inside the functor
category as being a sheaf that is locally representable.

Denote by Aff the category of affine schemes. This is just the
opposite category to the category of commutative rings with
identity.
By Yoneda, we have an fully faithfull functor

algebraic varieties ↪→ Functors(Affop,Sets)

One can characterise a variety (really a scheme) inside the functor
category as being a sheaf that is locally representable.

Denote by Aff the category of affine schemes. This is just the
opposite category to the category of commutative rings with
identity.
By Yoneda, we have an fully faithfull functor

algebraic varieties ↪→ Functors(Affop,Sets)

One can characterise a variety (really a scheme) inside the functor
category as being a sheaf that is locally representable.

Remark Lets rephrase the first example. Consider the functor

Affop → Sets.

that sends

X 7→ {isomorphism classes of flat families of elliptic curves over X}.

This functor is a sheaf but it is not locally representable.

Remark Lets rephrase the first example. Consider the functor

Affop → Sets.

that sends

X 7→ {isomorphism classes of flat families of elliptic curves over X}.

This functor is a sheaf but it is not locally representable.

Towards a definiton of stack
The 2-category of stacks will be a certian subcategory of the
2-category of lax functors

Affop → Gpds.

The word lax is not been defined in this talk, we will illustrate its
meaning with examples below before writing down a dictionary
definition.

Some examples of lax functors that turn out to be algebraic stacks

The moduli stack of elliptic curves
Let G be an algebraic group. The classifying stack BG of
G -bundles
If X is projective one can construct a relative version of BG called
the moduli stack of G -bundles on X .

Some examples of lax functors that turn out to be algebraic stacks
The moduli stack of elliptic curves

Let G be an algebraic group. The classifying stack BG of
G -bundles
If X is projective one can construct a relative version of BG called
the moduli stack of G -bundles on X .

Some examples of lax functors that turn out to be algebraic stacks
The moduli stack of elliptic curves
Let G be an algebraic group. The classifying stack BG of
G -bundles

If X is projective one can construct a relative version of BG called
the moduli stack of G -bundles on X .

Some examples of lax functors that turn out to be algebraic stacks
The moduli stack of elliptic curves
Let G be an algebraic group. The classifying stack BG of
G -bundles
If X is projective one can construct a relative version of BG called
the moduli stack of G -bundles on X .

A lax functor F : Affop → Gpds assigns a groupoid F (Spec(R))
to each affine space Spec(R) and a pullback functor
f ∗ : F (Spec(R))→ F (Spec(S)) to every morphism
f : Spec(S)→ Spec(R). Further there are natural isomorphisms

αf ,g : f ∗ ◦ g∗
∼→ (gf)∗

This data is subject to the following constraints :

1. id∗ = id
2. αf ,id = αid,g = id
3. The following diagram commutes :

h∗ ◦ g∗ ◦ f ∗ h∗ ◦ (f ◦ g)∗

(g ◦ h)∗ ◦ f ∗ (f ◦ g ◦ f)∗

∼

∼ ∼
∼

Grothendieck topologies
Let C be a small category with finite fibered products. A
Grothendieck topology on C consists of an assignment to each
object X of C a collection cov(X) of sets of arrows called the
coverings of X such that

1. all isomorphisms are coverings, ie Y
∼→ X ∈ cov(X)

2. {Ui ∈ cov(X)} and Z → X implies {Ui ×X Z} ∈ cov(Z)

3. if {Ui → X} ∈ cov(X) and {Vij → Xi} ∈ cov(Xi) for each i ,
then {Vij → Xi → X} ∈ cov(X).

Examples

1. The usual topology on Top

2. The Zariski topology on Aff

3. The smooth or etale topology on Aff

Suppose that C has a topology. Further assume that C has
coproducts.
A sheaf on C is a functor F : Cop → Sets such that for all such
that {Ui ∈ cov(X)} the following sequence is exact

F (X)→ F (U) ⇒ F (U ×X U)

A stack over C is a lax functor

F : Cop → Gpds

such that

1. morphisms glue, more precisely for all X ∈ C and all
x .y ∈ F (X) the functor

Isom(x , y) : C/X → Sets

(f : Y → X) 7→ {isomorphisms between f ∗x and f ∗y}

is a sheaf.

2. objects glue, more precisely all descent data are effective.

Descent Data
Consider a covering family {Ui → U} an object x ∈ F (U)
produces via pullack objects xi ∈ F (Ui). Denote by xi |Uij

the
pullback of xi to F (Ui ×U Uj). We have isomorphisms

φij : xi |Uij

∼→ xj |Uji

subject to a cocylce condition on triple products.

Such a family (xi , φij) is called a descent datum. The assertion
that descent data are effective means that they all come from an x .

Stacks revisited
The category of stacks is in fact a 2-category but the 2-categorical
stucture is not transparent from the above definition. In the
literature it is customary to define a stack using categories fibered
in groupoids. The defintion is equivalent. We recall it now.

A category fibered in groupoids over C is a category E and a
functor F : E→ C such that

1. for each morphism f : y ′ → y in C and t ∈ C with F (ty) = y
there is a t ′ → t in E projecting to f in C.

2. for each diagram of the form

t ′′

t ′ t E

T ′′ T ′ T C

F

over T ′′ → T ′ → T in C the triangle can be completed
uniquely.

Given a category fibered in groupoids, one can produce a lax
functor into groupoids.

This process can be reversed. So a functor
Cop → Sets produces a category fibered in groupoids. In particular
a representable functor produces a category fibered in groupoids.
One can prove a Yoneda type theorem in this setting.

Given a category fibered in groupoids, one can produce a lax
functor into groupoids. This process can be reversed.

So a functor
Cop → Sets produces a category fibered in groupoids. In particular
a representable functor produces a category fibered in groupoids.
One can prove a Yoneda type theorem in this setting.

Given a category fibered in groupoids, one can produce a lax
functor into groupoids. This process can be reversed. So a functor
Cop → Sets produces a category fibered in groupoids.

In particular
a representable functor produces a category fibered in groupoids.
One can prove a Yoneda type theorem in this setting.

Given a category fibered in groupoids, one can produce a lax
functor into groupoids. This process can be reversed. So a functor
Cop → Sets produces a category fibered in groupoids. In particular
a representable functor produces a category fibered in groupoids.
One can prove a Yoneda type theorem in this setting.

A stack is a category fibered in groupoids such that arrows glue
and all descent data are effective.

We have now a 2-category of stacks. This category has
2-carteasian products.

Algebraic Stacks
We work over the category Aff with the fppf topology. A
morphism F : X → Y of stacks is said to be representable if for
each scheme T and morphism T → Y the fibered product

T ×Y X

is a scheme.

Let P be a property of morphisms of schemes that is invariant
under base change. Then if F : X → Y is a representable
morphism of stacks it makes sense to say that F has property P.
If the X → X × X is representable then all fibered products of
schemes over X are schemes.

A stack X is said to be algebraic if the diagonal is representable
quasicompact and seperated and there exists a smooth surjective
morphism S → X where S is a scheme.
Remark Usually one replaces scheme be something more slightly
general in the above defintion.

Example The stack BGLn is algebraic.

To show that the diagonal is representable one needs to show that
the functor of isomorphisms between two vector bundles is
representable
This stack is presented by a point.(Use 2-Yoneda)

Example The stack BGLn is algebraic.
To show that the diagonal is representable one needs to show that
the functor of isomorphisms between two vector bundles is
representable

This stack is presented by a point.(Use 2-Yoneda)

Example The stack BGLn is algebraic.
To show that the diagonal is representable one needs to show that
the functor of isomorphisms between two vector bundles is
representable
This stack is presented by a point.(Use 2-Yoneda)

Given an algebraic stack with a presentation P → X we obtain a
groupoid in schemes

P ×X P P

The multiplication comes from projection onto the first and third
factor.

This process can be reversed.

Given an algebraic stack with a presentation P → X we obtain a
groupoid in schemes

P ×X P P

The multiplication comes from projection onto the first and third
factor. This process can be reversed.

Some remarks on the utility of stacks

1. They play an important role in moduli probelms.

2. One can prove highly non-trivial theorems about spaces using
stacks.

3. Stacks can put a new perspective on existing constructions
and theorems. For example, equivariant cohomology, ramified
covers.

Some remarks on the utility of stacks

1. They play an important role in moduli probelms.

2. One can prove highly non-trivial theorems about spaces using
stacks.

3. Stacks can put a new perspective on existing constructions
and theorems. For example, equivariant cohomology, ramified
covers.

Some remarks on the utility of stacks

1. They play an important role in moduli probelms.

2. One can prove highly non-trivial theorems about spaces using
stacks.

3. Stacks can put a new perspective on existing constructions
and theorems. For example, equivariant cohomology, ramified
covers.

Some remarks on the utility of stacks

1. They play an important role in moduli probelms.

2. One can prove highly non-trivial theorems about spaces using
stacks.

3. Stacks can put a new perspective on existing constructions
and theorems. For example, equivariant cohomology, ramified
covers.

