Groupoids of Connections and Higher-Algebraic QFT

Jeffrey C. Morton

Department of Mathematics University of Western Ontario

Connections in Geometry and Physics, 2009

< ロ > < 同 > < 回 > < 回 >

Groupoids of Connections

- Groupoids and Moduli Spaces
- Example: S¹

3 Constructing Z_G

- 2-Vector Spaces for Manifolds
- Z_G: 2-Linear Maps for Cobordisms
- Z_G: 2-Morphisms

Physics - Sort Of

- ∢ ∃ ▶

A Topological Quantum Field Theory can be seen as a monoidal functor:

 Z_G : **nCob** \rightarrow Vect

In particular:

$$Z(M_2 \circ M_1) = Z(M_2) \circ Z(M_1)$$

and

$$Z(S_1\amalg S_2)=Z(S_1)\otimes Z(S_2)$$
 and $Z(arnothing)=\mathbb{C}$

< 3

We'll see that for each (finite, or compact Lie) group *G*, there is an *Extended TQFT*, namely a (monoidal) 2-functor:

Z_G : nCob₂ \rightarrow 2Vect

Cobordisms of cobordisms form a 2-category **nCob**₂:

イロト イヨト イヨト イヨト

Definition

A **2-Vector space** is a \mathbb{C} -linear abelian category generated by simple elements. A 2-linear map is an exact \mathbb{C} -linear functor.

Finite-dimensional 2-vector spaces are all equivalent to \mathbf{Vect}^k . 2-linear maps then look like:

$$\begin{pmatrix} V_{1,1} & \cdots & V_{1,k} \\ \vdots & & \vdots \\ V_{l,1} & \cdots & V_{l,k} \end{pmatrix} \begin{pmatrix} W_1 \\ \vdots \\ W_k \end{pmatrix} = \begin{pmatrix} \bigoplus_{i=1}^k V_{1,i} \otimes W_i \\ \vdots \\ \bigoplus_{i=1}^k V_{l,i} \otimes W_i \end{pmatrix}$$

There are also *natural transformations* between 2-linear maps, which look like matrices with components $\alpha_{i,j} : V_{i,j} \rightarrow V'_{i,j}$.

A *groupoid* is a category in which all morphisms are invertible (a "many-object group", as a category is a "many-object monoid"). In a *Lie groupoid*, Ob and Mor = $\bigcup_{x,y} hom(x, y)$ are manifolds (and source, target, identity maps are surjective submersions).

- If X is a set, and a group G acts on X, there is an *action groupoid* $X/\!\!/G$ with:
- Objects: elements of X
- Morphisms: triples (x, g, y) where gx = y This groupoid, up to equivalence of groupoids, represents a *quotient stack*.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two interesting moduli spaces:

- connections on a manifold M: $\mathcal{A}(M)$
- flat connections on M: $A_0(M)$

Both are acted on by gauge transformations. We will mostly consider:

 $\mathcal{A}_0(M)/\!\!/\mathcal{G}$

 $\Pi_1(M)$ has objects $x \in M$ and morphisms homotopy classes of paths. The groupoid of *flat* connections is equivalent to the functor category:

 $\mathcal{A}_0(B) = \operatorname{Fun}(\Pi_1(B), G)$

(Gauge transformations are natural transformations between these functors).

< ロ > < 同 > < 回 > < 回 >

For example, if $B = S^1$, $\Pi_1(S^1) \simeq \mathbb{Z}$. A *G*-connection *g* is specified by the holonomy $g(1) \in G$. A natural transformation from *g* to *g'* is given by $h \in G$, such that $g' = hgh^{-1}$. So then:

 $\mathcal{A}_0(S^1) \simeq G/\!\!/ G$

is equivalent to the groupoid with:

- Objects: conjugacy classes [g] of G
- Morphisms: only isotopy subgroups Aut(g) for each [g]

< ロ > < 同 > < 回 > < 回 >

Lemma

If **X** is a groupoid, the functor category $Rep(\mathbf{X}) = [\mathbf{X}, \mathbf{Vect}]$ is a 2-vector space.

Later on, 2-Hilbert space structure will come from a "measure" on \underline{X} , given using groupoid cardinality

$$|\mathbf{X}| = \sum_{[x]} \frac{1}{|Aut(x)|}$$

or the analog for differentiable stacks (Weinstein) from the "volume form":

$$\operatorname{vol}(\mathbf{X}) = \int_{\underline{X}} (\int_{\operatorname{Aut}([x])} d\nu)^{-1} d\mu$$

• • • • • • • • • • • •

The methods used can also be used to apply to any theory whose *states* and *histories*, and their *symmetries* give moduli stacks of finite total volume. Here, these are connections and gauge transformations. To build $Z_G : \mathbf{nCob}_2 \rightarrow \mathbf{2Vect}$, use a topological gauge theory with gauge group *G* (assume *G* finite, or compact Lie). Flat *G*-connections on manifolds can be specified by holonomies along paths. Then the 2-vector space $Z_G(B)$ is:

$$Z_G(B) = Rep(\mathcal{A}_0(B)) = [\mathcal{A}_0(B), Vect]$$

Suppose $B = S^1$. We get $Z_G(S^1) = [\mathcal{A}(S^1), \text{Vect}] \simeq [G/\!/G, \text{Vect}]$. This gives a vector space for each $[g] \in G$ and an isomorphism for each conjugacy relation:

So that

$$Z_G(S^1) \simeq \prod_{[g]} \operatorname{Rep}(\operatorname{Aut}([g]))$$

So any 2-vector in this 2-vector space is a direct sum of irreducible

A physically interesting case is G = SU(2). The irreducible (basis) objects of $Z_{SU(2)}(S^1) \simeq [SU(2)/\!/SU(2), \text{Vect}]$ amount to a choice of conjugacy class in SU(2) (i.e. $\phi \in [0, 2\pi]$ and representation of stabilizer subgroup (U(1) if $m \neq 0$, or SU(2) if m = 0).

A general object corresponds to some coherent sheaf of vector spaces on $SU(2)/\!/SU(2)$ (i.e. equivariant).

GAP 2009 13 / 22

• • • • • • • • • • • •

A cobordism between manifolds can be expressed as a diagram:

$$B \stackrel{i}{\leftarrow} S \stackrel{i'}{\rightarrow} B'$$

which gives a diagram of the groupoids of connections:

$$\mathcal{A}_0(B) \stackrel{i^\star}{\leftarrow} \mathcal{A}_0(S) \stackrel{(i')^\star}{
ightarrow} \mathcal{A}_0(B')$$

since both connections and gauge transformations on S can be restricted along the inclusion maps *i* and *i'*.

So we have:

$$Z_G(B) \stackrel{p^*}{\to} \left[\mathcal{A}_0(S), \mathsf{Vect}
ight] \stackrel{(p')^*}{\leftarrow} Z_G(B')$$

where p^* is the *pullback* 2-linear map, taking $F : \mathcal{A}_0(B) \to \text{Vect}$ to $(F \circ p) : \mathcal{A}_0(S) \to \text{Vect}$. Likewise $(p')^* : Z_G(B') \to [\mathcal{A}_0(S), \text{Vect}]$. To push a 2-vector in $Z_G(B)$ to one in $Z_G(B')$ involves a (direct) sum over all "histories" - i.e. connections which restrict to *a* and *a'*, as in this diagram:

Then picking basis elements $(a, W) \in Z_G(B)$ and $(a', W') \in Z_G(B')$, we get

$$Z_G(S)_{(a,W),(a',W')} = \bigoplus_{[s]} \hom_{Rep(Aut(s))} [p^*(W), (p')^*(W')]$$

for objects s with (p, p')(s) = (a, a').

(By Schur's lemma, this counts the multiplicity of the irrep W' in $(p')_* \circ p^*W$.)

So the adjoint 2-linear map

$$(\rho')_* : [\mathcal{A}_0(\mathcal{S}), \textbf{Vect}] \to Z_G(B')$$

pushes forward a 2-vector $p^*F \in Rep(\mathcal{A}_0(S))$ to the *induced* representation in $Rep(\mathcal{A}_0(B'))$.

Suppose $Y : S^1 + S^1 \rightarrow S^1$ is the "pair of pants":

Then we have the diagram:

 $Z_G(Y)$ sends a representation over ([g], [g']) to one with nontrivial reps over [gg'] for any representatives (g, g').

Given a cobordism with corners between two cobordisms with the same source and target: there is a tower of groupoids:

Then we get:

$$Z_G(M): Z_G(S_1) \to Z_G(S_2)$$

a natural transformation whose components are linear maps:

$$Z_{G}(M)_{([a],W),([a'],W')} : \bigoplus_{[s_{1}]} \hom_{Rep(\operatorname{Aut}(s_{1}))} [p_{1}^{*}(W), p_{2}^{*}(W')]$$
$$\rightarrow \bigoplus_{[s_{2}]} \hom_{Rep(\operatorname{Aut}(s_{2}))} [p'_{1}^{*}(W), p'_{2}^{*}(W')]$$

The natural transformation

$$Z_{G}(M)_{([a],W),([a'],W')} : \bigoplus_{[s_{1}]} \hom_{Rep(\operatorname{Aut}(s_{1}))} [p_{1}^{*}(W), p_{2}^{*}(W')]$$
$$\rightarrow \bigoplus_{[s_{2}]} \hom_{Rep(\operatorname{Aut}(s_{2}))} [p'_{1}^{*}(W), p'_{2}^{*}(W')]$$

has components which are given by:

$$Z_G(M)_{([a],W),([a'],W'),(s_1,s_2)}(f) = |\widehat{(s_1,s_2)}| \sum_{g \in \operatorname{Aut}(s_2)} gfg^{-1}$$

where (s_1, s_2) is a subgroupoid of $\mathcal{A}_0(M)$, the "essential preimage" of (s_1, s_2) under (p, p'), and $|\cdot|$ is the groupoid cardinality (or stack volume).

(This comes from an analogous "pull-push" operation: cf Baez and Dolan, "Groupoidification".)

Theorem

The construction we've just seen gives a 2-functor

$Z_G: \textbf{nCob}_2 \to \textbf{2Vect}$

(that is, an Extended TQFT).

For physics, we really want **2-Hilbert spaces**: **Hilb**-enriched abelian \star -categories with all limits. Generated by simple objects (i.e. ones where hom(x, x) $\cong \mathbb{C}$.

Typical example: a category of **fields of Hilbert spaces**, (\mathcal{H} on a measure space (X, μ) consists of an X-indexed family of Hilbert spaces \mathcal{H}_x (together with a good space of sections).

Morphisms are (certain) fields of bounded operators $\phi : \mathcal{H} \to \mathcal{K}$, with $\phi_x \in \mathcal{B}(\mathcal{H}_x, \mathcal{K}_x)$ preserving good sections.

2-linear maps: C-linear additive *-functors.

- $\Phi_{\mathcal{K},\mu}$: Meas(X) \rightarrow Meas(Y) is specified by:
- a field of Hilbert spaces $\mathcal{K}_{(x,y)}$ on $X \times Y$
- item a Y-family $\{\mu_y\}$ of measures on X, where:

$$\Phi_{\mathcal{K},\mu}(\mathcal{H})_{\mathcal{Y}} = \int_{\mathcal{X}}^{\oplus} \mathcal{H}_{\mathcal{X}} \otimes \mathcal{K}_{(\mathcal{X},\mathcal{Y})} \mathrm{d}\mu_{\mathcal{Y}}(\mathcal{X})$$

When $B = B' = \emptyset$, so that $A_0(B) = A_0(B') = 1$, the terminal groupoid, with Rep(1) =**Vect**. Then the extended TQFT reduces to a TQFT. For *G* is a finite group, this theory reproduces the (untwisted) Dijkgraaf-Witten model. If *G* is compact Lie, this is *BF theory*. For $B \neq \emptyset$, this describes a TQFT coupled to boundary conditions—"matter". Take the circle as boundary around an excised point particle! If G = SU(2) and n = 3, this depicts particles classified by mass

If G = SU(2) and n = 3, this depicts particles classified by mass $(m \in [0, 2\pi])$ and spin (unitary group representations) propagating on a background described by 3D quantum gravity (a BF theory in 3D). If n = 4, this is a limit of gravity as Newton's $G \rightarrow 0$.