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TQFT and ETQFT

A Topological Quantum Field Theory can be seen as a monoidal
functor:

ZG : nCob→ Vect

1Z(S )

2Z(S )

Z(M)

S1

S2

M

In particular:
Z (M2 ◦M1) = Z (M2) ◦ Z (M1)

and
Z (S1 q S2) = Z (S1)⊗ Z (S2) and Z (∅) = C
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TQFT and ETQFT

We’ll see that for each (finite, or compact Lie) group G, there is an
Extended TQFT, namely a (monoidal) 2-functor:

ZG : nCob2 → 2Vect
Z(X)

Z(Y')

Z(TS) Z(S'T')
Z(M)

TT'

M

X

YS Y

X

S
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TQFT and ETQFT

Cobordisms of cobordisms form a 2-category nCob2:
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TQFT and ETQFT

Definition
A 2-Vector space is a C-linear abelian category generated by simple
elements. A 2-linear map is an exact C-linear functor.

Finite-dimensional 2-vector spaces are all equivalent to Vectk . 2-linear
maps then look like:V1,1 . . . V1,k

...
...

Vl,1 . . . Vl,k


W1

...
Wk

 =


⊕k

i=1 V1,i ⊗Wi
...⊕k

i=1 Vl,i ⊗Wi


There are also natural transformations between 2-linear maps, which
look like matrices with components αi,j : Vi,j→V ′i,j .
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Groupoids of Connections Groupoids and Moduli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-object monoid”). In a
Lie groupoid, Ob and Mor = ∪x ,yhom(x , y) are manifolds (and source,
target, identity maps are surjective submersions).
If X is a set, and a group G acts on X , there is an action groupoid
X//G with:
• Objects: elements of X
• Morphisms: triples (x ,g, y) where gx = y This groupoid, up to
equivalence of groupoids, represents a quotient stack.
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Groupoids of Connections Groupoids and Moduli Spaces

Two interesting moduli spaces:
• connections on a manifold M: A(M)
• flat connections on M: A0(M)
Both are acted on by gauge transformations. We will mostly consider:

A0(M)//G

Π1(M) has objects x ∈ M and morphisms homotopy classes of paths.
The groupoid of flat connections is equivalent to the functor category:

A0(B) = Fun(Π1(B),G)

(Gauge transformations are natural transformations between these
functors).
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Groupoids of Connections Groupoids and Moduli Spaces

For example, if B = S1, Π1(S1) ' Z. A G-connection g is specified by
the holonomy g(1) ∈ G. A natural transformation from g to g′ is given
by h ∈ G, such that g′ = hgh−1. So then:

A0(S1) ' G//G

is equivalent to the groupoid with:
• Objects: conjugacy classes [g] of G
• Morphisms: only isotopy subgroups Aut(g) for each [g]
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Constructing ZG 2-Vector Spaces for Manifolds

Lemma

If X is a groupoid, the functor category Rep(X) = [X,Vect] is a 2-vector
space.

Later on, 2-Hilbert space structure will come from a “measure” on X,
given using groupoid cardinality

|X| =
∑
[x ]

1
|Aut(x)|

or the analog for differentiable stacks (Weinstein) from the “volume
form”:

vol(X) =

∫
X

(∫
Aut([x ])

dν
)−1dµ
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Constructing ZG 2-Vector Spaces for Manifolds

The methods used can also be used to apply to any theory whose
states and histories, and their symmetries give moduli stacks of finite
total volume. Here, these are connections and gauge transformations.
To build ZG : nCob2 → 2Vect, use a topological gauge theory with
gauge group G (assume G finite, or compact Lie). Flat G-connections
on manifolds can be specified by holonomies along paths.
Then the 2-vector space ZG(B) is:

ZG(B) = Rep(A0(B)) = [A0(B),Vect]
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Constructing ZG 2-Vector Spaces for Manifolds

Suppose B = S1. We get ZG(S1) = [A(S1),Vect] ' [G//G,Vect]. This
gives a vector space for each [g] ∈ G and an isomorphism for each
conjugacy relation:

So that
ZG(S1) '

∏
[g]

Rep(Aut([g]))

So any 2-vector in this 2-vector space is a direct sum of irreducible
reps (which form a basis). The components of a 2-vector are direct
sums of representation spaces (“internal state space”).
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Constructing ZG 2-Vector Spaces for Manifolds

A physically interesting case is G = SU(2). The irreducible (basis)
objects of ZSU(2)(S1) ' [SU(2)//SU(2),Vect] amount to a choice of
conjugacy class in SU(2) (i.e. φ ∈ [0,2π] and representation of
stabilizer subgroup (U(1) if m 6= 0, or SU(2) if m = 0).

A general object corresponds to some coherent sheaf of vector spaces
on SU(2)//SU(2) (i.e. equivariant).
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Constructing ZG 2-Vector Spaces for Manifolds

A cobordism between manifolds can be expressed as a diagram:

B i← S i ′→ B′

which gives a diagram of the groupoids of connections:

A0(B)
i?← A0(S)

(i ′)?

→ A0(B′)

since both connections and gauge transformations on S can be
restricted along the inclusion maps i and i ′.
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Constructing ZG 2-Vector Spaces for Manifolds

So we have:
ZG(B)

p∗→
[
A0(S),Vect

] (p′)∗← ZG(B′)

where p∗ is the pullback 2-linear map, taking F : A0(B)→Vect to
(F ◦ p) : A0(S)→Vect. Likewise (p′)∗ : ZG(B′)→

[
A0(S),Vect

]
.

To push a 2-vector in ZG(B) to one in ZG(B′) involves a (direct) sum
over all “histories” - i.e. connections which restrict to a and a′, as in this
diagram:
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Constructing ZG 2-Vector Spaces for Manifolds

Then picking basis elements (a,W ) ∈ ZG(B) and (a′,W ′) ∈ ZG(B′), we
get

ZG(S)(a,W ),(a′,W ′)

=
⊕
[s]

homRep(Aut(s))[p∗(W ), (p′)∗(W ′)]

for objects s with (p,p′)(s) = (a,a′).
(By Schur’s lemma, this counts the multiplicity of the irrep W ′ in
(p′)∗ ◦ p∗W .)
So the adjoint 2-linear map

(p′)∗ :
[
A0(S),Vect

]
→ZG(B′)

pushes forward a 2-vector p∗F ∈ Rep(A0(S)) to the induced
representation in Rep(A0(B′)).

Jeffrey C. Morton (University of Western Ontario)Groupoids of Connections, Higher QFT GAP 2009 16 / 22



Constructing ZG 2-Vector Spaces for Manifolds

Suppose Y : S1 + S1→S1 is the “pair of pants”:

Then we have the diagram:

(G ×G)//G
∆

xxppppppppppp
m

%%LLLLLLLLLL

(G//G)2 G//G

(1)

ZG(Y ) sends a representation over ([g], [g′]) to one with nontrivial reps
over [gg′] for any representatives (g,g′).
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Constructing ZG 2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

A0(M)

p
zzttttttttt

p′
$$JJJJJJJJJ

A0(S1)

p1

��

p′
1

**TTTTTTTTTTTTTTTTTT A0(S2)

p2

ttjjjjjjjjjjjjjjjjjjj

p′
2

��

A0(B) A0(B′)

Then we get:
ZG(M) : ZG(S1)→ZG(S2)

a natural transformation whose components are linear maps:

ZG(M)([a],W ),([a′],W ′) :
⊕
[s1]

homRep(Aut(s1))[p∗1(W ),p∗2(W ′)]

→
⊕
[s2]

homRep(Aut(s2))[p′
∗
1(W ),p′∗2(W ′)]
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Constructing ZG 2-Vector Spaces for Manifolds

The natural transformation

ZG(M)([a],W ),([a′],W ′) :
⊕
[s1]

homRep(Aut(s1))[p∗1(W ),p∗2(W ′)]

→
⊕
[s2]

homRep(Aut(s2))[p′
∗
1(W ),p′∗2(W ′)]

has components which are given by:

ZG(M)([a],W ),([a′],W ′),(s1,s2)(f ) = | ̂(s1, s2)|
∑

g∈Aut(s2)

gfg−1

where ̂(s1, s2) is a subgroupoid of A0(M), the “essential preimage” of
(s1, s2) under (p,p′), and | · | is the groupoid cardinality (or stack
volume).
(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification”.)
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Constructing ZG 2-Vector Spaces for Manifolds

Theorem
The construction we’ve just seen gives a 2-functor

ZG : nCob2→2Vect

(that is, an Extended TQFT).
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Physics - Sort Of

For physics, we really want 2-Hilbert spaces: Hilb-enriched abelian
?-categories with all limits. Generated by simple objects (i.e. ones
where hom(x , x) ∼= C.
Typical example: a category of fields of Hilbert spaces, (H on a
measure space (X , µ) consists of an X -indexed family of Hilbert
spaces Hx (together with a good space of sections).
Morphisms are (certain) fields of bounded operators φ : H → K, with
φx ∈ B(Hx ,Kx ) preserving good sections.
2-linear maps: C-linear additive ?-functors.
ΦK,µ : Meas(X)→ Meas(Y) is specified by:
• a field of Hilbert spaces K(x ,y) on X × Y
• item a Y -family {µy} of measures on X , where:

ΦK,µ(H)y =

∫ ⊕
X
Hx ⊗K(x ,y)dµy (x)
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Physics - Sort Of

When B = B′ = ∅, so that A0(B) = A0(B′) = 1, the terminal groupoid,
with Rep(1) = Vect. Then the extended TQFT reduces to a TQFT. For
G is a finite group, this theory reproduces the (untwisted)
Dijkgraaf-Witten model. If G is compact Lie, this is BF theory.
For B 6= ∅, this describes a TQFT coupled to boundary
conditions—“matter”. Take the circle as boundary around an excised
point particle!
If G = SU(2) and n = 3, this depicts particles classified by mass
(m ∈ [0,2π]) and spin (unitary group representations) propagating on a
background described by 3D quantum gravity (a BF theory in 3D). If
n = 4, this is a limit of gravity as Newton’s G→0.
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