Toposes and Groupoids

Peter Oman University of Western Ontario February 26, 2010

Introduction

Theorem(Butz, Moerdijk '98): Let *E* be any topos with enough points. There exists a topological groupoid <u>G</u> = {G₁ ⇒ G₀} for which there is an equivalence of topoi *E* ≅ Sh(<u>G</u>).

Toposes (Topoi)

A (Grothendieck) topos is a category \underline{T} with:

- I. finite limits and colimits,
- 2. exponential objects,
- 3. a subobject classifier Ω ,
- 4. 'bounded' Giraud's theorem.

*This is an axiomatic description of a category given by sheaves on a site.

Examples

- 1. *Let X be a topological space, $\mathbf{Sh}(X)$ is a topos ($\Omega(U) = \{V | V \subset U\}$).
- 2. Sets is a topos with subobject classifier $\Omega = 2$.
- 3. Any presheaf category $[\mathbb{C}, \mathbf{Sets}]$ is a topos, $\Omega(C) = \mathbf{Sub}_{\hat{\mathbb{C}}}(Hom_{\mathbb{C}}(C, -))$; e.g., G-Sets.
- 4. A slice of a topos is a topos, internal presheaves on an internal category is a topos, etc....
 (The properties required of a topos are closed under a wide variety of categorical operations.)

Motivation

The idea is to think of Sh(X) as a categorical representation for the space X itself. Then we make arrow theoretic analogues of important properties/invariants of X.

These notions will carry verbatim to other topoi which are not spatial in nature.

Examples

- Cohomology becomes sheaf cohomology, i.e., consider the category of abelian group objects in T, A ∈ Ab(T), Hⁿ(T, A) = RⁿΓ(A). (Giraud's theorem implies we have enough injectives)
- In the category of étale schemes, with cover in the usual sense, the associated topos cohomology is étale cohomology
- Étale homotopy groups (pro-groups defined by limiting over the homotopy groups of certain simplicial sets, indexed by hypercovers, in a pointed, locally connected topos.)

Main Question

- How much do we enlarge our notion of topological space by looking at topoi?
- (Grothendieck-Galois Theory, SGAIV) In the category of étale schemes over a field, the associated topos is isomorphic to the category of G-Sets, for a pro-finite group G.

First Frames

- Definition: A *frame* is a distributive lattice with all joins and finite meets.
- Definition: A morphism of frames is a functor (as categories) that preserves finite meets (intersections) and infinite joins (unions).
- Definition: A 2-morphism is a natural transformation of functors.

Locales

- Definition: The 2-category of locales $\underline{Loc} = \underline{Frm}^{op}$.
- Definition: A map f of locales is open iff corresponding map of frames has a left adjoint f! satisfying the Frobenius identity.

$$f_!(U \wedge f(V)) = f_!(V) \wedge U$$

• Note: A continuous map $f: X \to Y$, Y is T_1 separable, is open iff corresponding map of locales is open.

Spaces and locales

- Can define in \underline{Loc} the notions points, embeddings, surjections, etc...
- Have adjoint functors $Loc \dashv pt : \underline{Loc} \to \mathbf{Top}$.
- Proposition: The adjunction restricts to an equivalence between the category of sober spaces and locales with enough points.
- Example: Any Hausdorff space is sober and can be recovered from its corresponding locale.

Locales and Topoi

- We can define the category of sheaves on a locale, as we do for spaces, giving an associated topos. $Sh:\underline{Loc} \to \underline{Top}$
- Think of a locale as a generalized notion of 'space' intermediate between the notions of topological space and topoi.
- Theorem: A topos is localic iff it is generated by the subobjects of its terminal object.

The 2-category of Topoi

- A continuous map between topological spaces induces an adjoint pair on associated topoi, motivating the definition of morphism.
- Definition: A (geometric) morphism of topoi $p: \mathcal{E} \to \mathcal{F}$, is an adjoint pair $p^* \dashv p_*: \mathcal{E} \to \mathcal{F}$, such that p^* preserves finite limits.
- A 2-morphism $p \Rightarrow q$ is a natural transformation $\eta: p^* \to q*$.

Geometric Morphisms

- A geometric morphism is $p: \mathcal{E} \to \mathcal{F}$
 - I. surjective if p^* is faithful,
 - 2. embedding if p_* is full and faithful,
 - 3. open if for each $F \in \mathcal{F}$ the induced functor of posets $p_{F_*} : Sub_{\mathcal{E}}(p^*F) \to Sub_{\mathcal{F}}(F)$ has a left adjoint $(p_F)_!$.
- Note: A map of localic toposes is open iff corresponding map of locales is open.

Locales and Topoi (cont.)

- Theorem* (Localic Reflection) The 2-functor $sh : \underline{Loc} \to \underline{Top}$ induces an equivalence of categories $sh : \underline{Map}(X, Y) \to \underline{Hom}(Sh(X), Sh(Y))$
- The above functor has a left adjoint $Loc: \underline{Top} \to \underline{Loc}$ given by $\mathbf{T} \mapsto Sub_{\mathbf{T}}(1)$ (complete Heyting algebra)
- Thus localic spaces are embedded into topoi, i.e., we enlarged the category of 'spaces' without changing the underlying notion.

Covering Theorem

- Theorem (Diaconescu): For every (Grothendieck) topos \mathcal{E} there exists a locale X and an open surjective (geometric) morphism $Sh(X) \twoheadrightarrow \mathcal{E}$.
- Corollary (Barr): For every Grothendieck topos \mathcal{E} there exists a complete Boolean algebra B and a surjective geometric morphism $Sh(B) \rightarrow \mathcal{E}$.

Monads

Definition: A monad T in a category C consists of a functor $T : \mathbf{C} \to \mathbf{C}$ and natural transformations

$$\eta: 1_{\mathbf{C}} \to T \qquad \mu: T^2 \to T$$

satisfying the following identities

Main Example: Adjunctions

Algebras

 Definition: A T-algebra is an object c ∈ C and a map h : T(c) → c such that the following diagrams commute

• Definition: (Eilenberg-Moore Category) A morphism of T-algebras is a map $f: c \rightarrow c'$ such that the following diagram commutes

$$\begin{array}{c|c} T(c) & \xrightarrow{h} & c \\ Tf & & & \\ Tf & & & \\ T(c') & \xrightarrow{h'} & c' \end{array}$$

Tripleable

• Given an adjunction $L \dashv R : Y \rightarrow X$, the monad T = RL on X induces a unique comparison functor $K : Y \rightarrow X^T$.

- The adjunction is *monadic* (tripleable) if the induced comparison functor is a categorical equivalence.
- Example: $F \dashv U : \mathbf{Grps} \rightarrow \mathbf{Sets}$

Beck's Theorem

Theorem: Given a functor $R:Y \to X,$ then R is monadic if

- I. R has a left adjoint $L: X \to Y$,
- 2. Y has coequalizers of reflexive pairs,
- 3. R preservers these coequalizers,
- 4. R reflects isomorphisms.

Beck-Chevalley Condition

• Assume the localic covering $Sh(X) \twoheadrightarrow \mathcal{E}$ is essential.

$$p_! \dashv p^* \dashv p_* : Sh(X) \to \mathcal{E}$$

- p^* is faithful, preserves colimits; thus, \mathcal{E} is equivalent to the category of algebras for the monad $T = p^* p_!$.
- By the direct/inverse image adjunction, the category of T-algebras is equivalent to the category of coalgebras for the comonad $T' = p^* p_*$.

Descent

• Consider the (truncated) simplicial topos obtained by pulling back p^{\ast} along itself .

 $Sh(X) \times_{\mathcal{E}} Sh(X) \times_{\mathcal{E}} Sh(X) \to Sh(X) \times_{\mathcal{E}} Sh(X) \rightrightarrows Sh(X)$

• An object $x \in Sh(X)$ satisfies descent if there exists a morphism $\theta : \pi_1^*(x) \to \pi_2^*(x)$ in $Sh(X) \times_{\mathcal{E}} Sh(X)$ such that $\Delta^*(\theta) = I_x$ and the following diagram in $Sh(X) \times_{\mathcal{E}} Sh(X) \times_{\mathcal{E}} Sh(X)$ commutes.

Monadic Descent

• The Beck-Chevalley condition states an object satisfying descent $\theta: \pi_1^*(x) \to \pi_2^*(x)$ corresponds to a T'-coalgebra

$$\theta^{ad}: x \to \pi_{1*}\pi_2^*(x) = p^*p_*(x)$$

• The category of objects satisfying descent is equivalent to the category of T-algebras.

 $\mathfrak{Desc}(Sh(X))\cong Sh(X)^T\cong \mathcal{E}$

Lemmas

- Lemma: Open geometric morphisms are preserved by pullbacks.
- Lemma: The topoi $Sh(X) \times_{\mathcal{E}} Sh(X)$ and $Sh(X) \times_{\mathcal{E}} Sh(X) \times_{\mathcal{E}} Sh(X)$ are localic.

• Lemma:
$$Sh(X) \cong \acute{E}t(X)$$

Reflection

Using localic reflection we can consider the simplicial topos

 $Sh(X) \times_{\mathcal{E}} Sh(X) \times_{\mathcal{E}} Sh(X) \to Sh(X) \times_{\mathcal{E}} Sh(X) \rightrightarrows Sh(X)$

as defining a simplicial space in \underline{Loc} .

$$G_2 \to G_1 \rightrightarrows G_0$$

This defines an internal category with $\acute{Et}(G_0) = Sh(X)$ Indeed, the twist isomorphism $G_1 \rightarrow G_1$ defines a (open) groupoid structure \underline{G} .

Groupoid Action

- We say an étale spaces over G_0 with an action of \underline{G} is a \underline{G} -Set.
- This is an étale space $X \to G_0$ with a map $\theta : s^*(X) \to t^*(X)$ over G_1 such that $i * (\theta) = I_X$ and $\partial^0(\theta)\partial^2(\theta) = \partial^1(\theta)$.
- On the level of sheaves this proves \underline{G} -Sets $\cong \mathfrak{Desc}(Sh(X)) \cong \mathcal{E}$

Morita Equivalence

• Theorem(Elephant C5.3.18): Let G and H be étale-complete open localic groupoids, and let $f : \underline{G} \to \underline{H}$ be a geometric morphism. Then there exists an étale-complete open groupoid \underline{K} and groupoid morphisms g and h such that g is an open weak equivlanece, and such that the following diagram commutes up to isomorphism

Extensions

- Theorem(Moerdijk, Pronk '97): For any ringed topos $\mathcal{T} = (\mathbf{T}, \mathcal{O}_T)$ the following properties are equivalent:
 - I. $\mathcal{T} \cong Sh(M)$ for some orbifold M (unique up to orbifold equivalence),
 - 2. $T \cong Sh_L(M)$ for some manifold M and a compact Lie group L acting smoothly on X, so that the action has finite isotropy groups and faithful slice representations,
 - 3. T is an effective smooth etendue such that the diagonal $T \to T \times T$ is a proper (topos) map,
 - 4. $\mathcal{T} \cong Sh(\underline{G})$ for some effective etale groupoid \underline{G} such that $(s,t): G_1 \to G_0 \times G_0$ is a proper map of spaces.

Applications

- Topological representation of sheaf cohomology
- fibered product of orbifolds
- change of base formulas for sheaf cohomology

Thank You