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Introduction

• Theorem(Butz, Moerdijk ‘98):  Let    be any topos 
with enough points.  There exists a topological 
groupoid                            for which there is an 
equivalence of topoi                   . 

E

G = {G1 ⇒ G0}
E ∼= Sh(G)



Toposes (Topoi)
A (Grothendieck) topos is a category    
with:

1. finite limits and colimits,
2. exponential objects,
3. a subobject classifier    ,

4. ‘bounded’ - Giraud’s theorem.

*This is an axiomatic description of a 
category given by sheaves on a site.

Ω

T



Examples

1. *Let X be a topological space,                                                   
is a topos (                                ).     

2.         is a topos with subobject classifier          .

3. Any presheaf category                is a 
topos,                                              ; e.g., G-Sets.

4. A slice of a topos is a topos, internal presheaves on 
an internal category is a topos, etc....                        
(The properties required of a topos are closed 
under a wide variety of categorical operations.)

Ω(U) = {V |V ⊂ U}

Sets Ω = 2

[C,Sets]
Ω(C) = SubĈ(HomC(C,−))

Sh(X)



Motivation

The idea is to think of           as a 
categorical representation  for the space X 
itself.   Then we make arrow theoretic 
analogues of important properties/invariants 
of X.

These notions will carry verbatim to other 
topoi which are not spatial in nature. 

Sh(X)



Examples

• Cohomology becomes sheaf cohomology, i.e., 
consider the category of abelian group objects 
in    ,                                                     .      
(Giraud’s theorem implies we have enough 
injectives) 

• In the category of étale schemes, with cover in the 
usual sense,  the associated topos cohomology is 
étale cohomology

• Étale homotopy groups (pro-groups defined by 
limiting over the homotopy groups of certain 
simplicial sets, indexed by hypercovers, in a 
pointed, locally connected topos.)

A ∈ Ab(T), Hn(T, A) = RnΓ(A)T



• How much do we enlarge our notion of 
topological space by looking at topoi?

• (Grothendieck-Galois Theory, SGAIV) In the 
category of étale schemes over a field, the 
associated topos is isomorphic to the category of 
G-Sets, for a pro-finite group G. 

Main Question



First Frames

• Definition:  A frame is a distributive lattice with all 
joins and finite meets.

• Definition:  A morphism of frames is a functor (as 
categories) that preserves finite meets 
(intersections) and infinite joins (unions). 

• Definition:  A 2-morphism is a natural 
transformation of functors.



Locales 

• Defintion:  The 2-category of locales                    .

• Definition: A map   of locales is open iff 
corresponding map of frames has a left adjoint  
satisfying the Frobenius identity.                          

• Note:  A continuous map                 ,   Y is   
separable, is open iff corresponding map of locales 
is open.

Loc = Frmop

f
f!

f!(U ∧ f(V )) = f!(V ) ∧ U

f : X → Y T1



Spaces and locales

• Can define in         the notions points, 
embeddings, surjections, etc...

• Have adjoint functors                                    .

• Proposition:  The adjunction restricts to an 
equivalence between the category of sober spaces 
and locales with enough points.

• Example:  Any Hausdorff space is sober and can be 
recovered from its corresponding locale.

Loc

Loc ! pt : Loc→ Top



Locales and Topoi

• We can define the category of sheaves on a locale, 
as we do for spaces,  giving an associated topos.

• Think of a locale as a generalized notion of  ‘space’ 
intermediate between the notions of topological 
space and topoi.

• Theorem:  A topos is localic iff it is generated by 
the subobjects of its terminal object.

Sh : Loc→ Top



The 2-category of Topoi

• A continuous map between topological spaces 
induces an adjoint pair on associated topoi, 
motivating the defintion of morphism.

• Definition:  A (geometric) morphism of 
topoi                 , is an adjoint 
pair                          ,  such that     preserves 
finite limits.  

• A 2-morphism            is a natural transformation 

p : E → F
p∗ ! p∗ : E → F p∗

p⇒ q

η : p∗ → q ∗ .



Geometric Morphisms

• A geometric morphism is 

1. surjective if      is faithful, 

2. embedding if      is full and faithful, 

3. open if for each            the induced functor of 
posets                                                has a left 
adjoint          .  

• Note:  A map of localic toposes is open iff 
corresponding map of locales is open. 

p∗

p∗

F ∈ F

p : E → F

pF∗ : SubE(p∗F )→ SubF (F )
(pF )!



Locales and Topoi (cont.)

• Theorem* (Localic Reflection)                           
The  2-functor                       induces an 
equivalence of categories 

• The above functor has a left adjoint                  
given by                     (complete Heyting algebra) 

• Thus localic spaces are embedded into topoi, i.e., 
we enlarged the category of  ‘spaces’ without 
changing the underlying notion.

sh : Loc→ Top

sh : Map(X, Y )→ Hom(Sh(X), Sh(Y ))

Loc : Top→ Loc

T !→ SubT(1)



Covering Theorem

• Theorem (Diaconescu):  For every (Grothendieck) 
topos    there exists a locale X and an open 
surjective (geometric) morphism                    .

• Corollary (Barr):  For every Grothendieck topos   
there exists a complete Boolean algebra B and a 
surjective geometric morphism                    .

E
Sh(X) ! E

E

Sh(B) ! E



Monads
Definition:  A monad    in a category    
consists of a functor                 and natural 
transformations 

satisfying the following identities

Main Example:  Adjunctions

T C
T : C→ C

η : 1C → T µ : T 2 → T

T 3 Tµ ! T 2 T
ηT ! T 2 " Tη

T

T 2

µT

#
µ ! T

µ

#
T

µ

#"

II
!

1



Algebras
• Definition: A T-algebra is an object             

and a map                   such that the 
following diagrams commute

• Definition: (Eilenberg-Moore Category) A 
morphism of  T-algebras is a map                     
such that the following diagram commutes 

     

c ∈ C
h : T (c)→ c

f : c→ c′

T 2(c)
Th! T (c) c

ηc ! T (c)

T (c)

µc

" h ! c

h

"
c

h

"

I
!

1

T 2(c)
Th! T (c) c

ηc ! T (c)

T (c)

µc

" h ! c

h

"
c

h

"

I
!

T (c)
h ! c

T (c′)

T f

" h′ ! c′

f

"

1



Tripleable

• Given an adjunction                      ,  the 
monad             on X induces a unique 
comparison functor                   .

• The adjunction is monadic (tripleable) if the 
induced comparison functor is a categorical 
equivalence.

• Example:

L ! R : Y → X
T = RL

F ! U : Grps→ Sets

K : Y → XT



Beck’s Theorem

Theorem:  Given a functor                  , then R is 
monadic if

1. R has a left adjoint                  ,

2. Y has coequalizers of reflexive pairs,

3. R preservers these coequalizers,

4. R reflects isomorphisms.

R : Y → X

L : X → Y



Beck-Chevalley Condition

• Assume the localic covering                                
is essential.

•      is faithful, preserves colimits;  thus,      is 
equivalent to the category of algebras for the 
monad               .

• By the direct/inverse image adjunction, the 
category of  T-algebras is equivalent to the 
category of coalgebras for the 
comonad                 .       

Sh(X) ! E

p! ! p∗ ! p∗ : Sh(X)→ E

p∗ E

T = p∗p!

T ′ = p∗p∗



Descent

• Consider the (truncated) simplicial topos obtained 
by pulling back      along itself .  

• An object                   satisfies descent if there exists 
a morphism                              in                              
such that                    and the following diagram    
in                                       commutes.

Sh(X)×E Sh(X)×E Sh(X)→ Sh(X)×E Sh(X) ⇒ Sh(X)

p∗

x ∈ Sh(X)
θ : π∗

1(x)→ π∗
2(x)

∆∗(θ) = Ix

Sh(X)×E Sh(X)

Sh(X)×E Sh(X)×E Sh(X)

T 2(c)
Th! T (c) c

ηc ! T (c)

T (c)

µc

" h ! c

h

"
c

h

"

I
!

T (c)
h ! c

T (c′)

T f

" h′ ! c′

f

"

π∗1(x)
π∗12(θ)! π∗2(x)

π∗2(x)

π∗23(θ)

"

π ∗
13 (θ) !

1



Monadic Descent

• The Beck-Chevalley condition states an         
object satisfying descent                       
corresponds to a    -coalgebra                             

• The category of objects satisfying descent is 
equivalent to the category of T-algebras.

θ : π∗
1(x)→ π∗

2(x)

θad : x→ π1∗π
∗
2(x) = p∗p∗(x)

T ′

Desc(Sh(X)) ∼= Sh(X)T ∼= E



Lemmas

• Lemma:  Open geometric morphisms are 
preserved by pullbacks.

• Lemma:  The topoi                                               
and                                           are localic.

• Lemma: 

Sh(X)×E Sh(X)
Sh(X)×E Sh(X)×E Sh(X)

Sh(X) ∼= Ét(X)



Reflection

Using localic reflection we can consider the 
simplicial topos 

as defining a simplicial space in       .

This defines an internal category with                       
Indeed, the twist isomorphism                defines a 
(open) groupoid structure       .

Sh(X)×E Sh(X)×E Sh(X)→ Sh(X)×E Sh(X) ⇒ Sh(X)

Loc

G2 → G1 ⇒ G0

G1 → G1

Ét(G0) = Sh(X)

G



Groupoid Action

• We say an étale spaces over      with an action         
of       is a      -Set.

• This is an étale space                  with a                 
map                                 over       such                    
that                    and                                .

• On the level of sheaves this proves 

G G
G0

X → G0

G1θ : s∗(X)→ t∗(X)
i ∗ (θ) = IX ∂0(θ)∂2(θ) = ∂1(θ)

G-Sets ∼= Desc(Sh(X)) ∼= E



Morita Equivalence
• Theorem(Elephant C5.3.18):  Let    and    be 

étale-complete open localic groupoids, and 
let                 be a geometric morphism.  
Then there exists an étale-complete open 
groupoid    and groupoid morphisms g and h 
such that g is an open weak equivlanece, and 
such that the following diagram commutes 
up to isomorphism

G H

f : G→ H

K

T 2(c)
Th! T (c) c

ηc ! T (c)

T (c)

µc

" h ! c

h

"
c

h

"

I
!

T (c)
h ! c

T (c′)

T f

" h′ ! c′

f

"

π∗1(x)
π∗12(θ)! π∗2(x)

π∗2(x)

π∗23(θ)

"

π ∗
13 (θ) !

K-Sets

G-Sets

g

" f! H-Sets

h

!

1



Extensions 
• Theorem(Moerdijk, Pronk ‘97):  For any ringed   

topos                    the following properties are 
equivalent:      

1.                 for some orbifold M (unique up to 
orbifold equivalence),

2.                     for some manifold M and a 
compact Lie group L acting smoothly on X, so 
that the action has finite isotropy groups and 
faithful slice representations,

3.     is an effective smooth etendue such that the 
diagonal                   is a proper (topos) map,

4.                  for some effective etale groupoid  
such that                                is a proper map 
of spaces.

T = (T,OT )

T ∼= Sh(M)

T ∼= ShL(M)

T
T → T × T

T ∼= Sh(G) G

(s, t) : G1 → G0 ×G0



Applications

• Topological representation of sheaf 
cohomology

• fibered product of orbifolds 

• change of base formulas for sheaf 
cohomology



Thank You


